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Abstract In this work, the rectilinear flow of a complex fluid
(human blood) under a pulsating time-dependent pressure gra-
dient is analyzed. A first approximation of the real case of
blood flowing in a vein is described. The normalized pressure
gradient simulates the pumping work of the heart while the
flow geometry (circular tube) is assumed rigid, smooth, and
cylindrical. The rheological behavior of blood with different
cholesterol levels is modeled using the Bautista–Manero–Puig
(BMP) constitutive equation. According to the analytical so-
lution, a flow enhancement is predicted to first order which
represents the optimum pumping work of the heart which
governs the flow of blood in the entire body. This work is a
contribution to the understanding of the complex rheology
involved in the discontinuous pressure-driven flow of blood
in the human body.

Keywords Hemorheology . Analytical solutions . Pulsatile
flow . Stochastic noise . Complex fluid . BMP constitutive
equation

Introduction

The pulsatile pressure-gradient-driven non-Newtonian flow in
a pipe is found in numerous biological cases and industrial
situations. For example, blood flow in veins, enhanced oil
recovery operations, polymer science (extrusion with oscillat-
ing dies), and time-dependent phenomena (thixotropy and
rheopexy) have important implications in the nuclear waste,
food, pharmacology, cosmetic, and battery industries.

In these flows, the liquid experiences a pulsating pressure
gradient and there is no axial or transversal perturbation. One
of the most interesting effects of this scheme is the flow en-
hancement caused by the pulsatile pressure gradient. This ex-
tra flow rate can be estimated as the difference between the
two flow rates: the constant pressure flow rate Q0 and the
time-averaged pulsatile pressure flow rate <Q(t)> (Manero
and Mena 1977; Manero and Walters 1980):

IQ %ð Þ ¼ 100
Q tð Þh i−Q0

Q0
ð1Þ

Several studies have demonstrated that deviations from
Newtonian behavior (shear thinning) cause flow enhancement
in pulsatile flow. This enhancement is proportional to the
square of the amplitude of the oscillating pressure gradient,
and its magnitude depends on the shape of the viscosity curve
(Manero andWalters 1980; Phan-Thien 1978, 1980a, b, 1981,
1982; Phan-Thien and Dudek 1982a, b; Herrera et al. 2009;
Herrera-Valencia et al. 2010; Lin et al. 2015). An important
factor is the wave form of the pulsatile gradient (triangular,
sinusoidal, or square) which has a strong effect on flow en-
hancement and power requirements (Barnes et al. 1969, 1971;
De Andrade Lima and Rey 2005, 2006).

Human blood is one of the most important biological
fluids. In the circulatory system, blood is forced to flow in
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the veins and arteries by a periodic pressure gradient caused
by the heart pump work. From a rheological point of view, the
whole blood (plasma and cells) is a complex non-Newtonian
fluid (Moreno et al. 2015), and its complex elasto-visco–plas-
tic behavior (viscoelasticity, shear thinning, thixotropy) is
caused by aggregation, disaggregation, deformation, orienta-
tion, and migration of the erythrocytes (Moyers-Gonzalez
et al. 2008a, b, c; Owens 2008; Moyers-Gonzalez and
Owens 2010).

The rheological behavior of blood is strongly affected by
the cholesterol levels (Moreno et al. 2015), but other factors
affect blood viscosity, such as hematocrit and glucose con-
tents, triglycerides, blood type, and shape of red blood cells.
Blood exhibits a complex rheological phenomena involving
yield stresses when the cholesterol content is high enough
(Apostolidis and Beris 2015; Apostoldis et al. 2016; Moreno
et al. 2015). From a rheometrical point of view, blood is a
challenge for experimentalists due to coagulation (blood
clotting) in the presence of oxygen. In this regard, the use of
anticoagulants such as heparin should be cautious to avoid the
rheological and transport properties to be affected (Moreno
et al. 2015). In this context, ethylenediaminetetraacetic acid
(EDTA) has been widely used as an anticoagulant in blood
samples for rheological characterizations (Moreno et al. 2015;
Sousa et al. 2016). EDTA has been reported to have no sig-
nificant effect upon the whole blood shear viscosity up to the
maximum concentration recommended by the International
Society of Clinical Hemorheology (Sousa et al. 2013). A re-
cent review article reports on the current measuring tech-
niques and advances in the field of hemorheology (Sousa
et al. 2016).

From a mathematical point of view, the pulsating flow of
blood has been modeled using various constitutive equations,
namely: (1) Casson, (2) Quemada, (3) power-law, (4) Cross-
Yasuda, (5) Owen (Del Rio et al. 1998; Anand and Rajagopal
2004; Prakash and Ogulu 2007; Moyers-Gonzalez et al.
2008a, b, c; Owens 2008; Siddiqui et al. 2009; Moyers-
Gonzalez and Owens 2010). These constitutive equations
have been tested in Poiseuille, oscillatory, and pulsating flows
to simulate the blood flow through the cardiovascular system
(Del Rio et al. 1998; Anand and Rajagopal 2004; Moyers-
Gonzalez et al. 2008a, b, c; Owens 2008; Moyers-Gonzalez
and Owens 2010). The relevance of computational simula-
tions in the development of cardiovascular devices, in partic-
ular heart pump systems and heart valves, has been highlight-
ed in several works (Anand and Rajagopal 2004), and there is
a need for powerful, yet simple, models than can capture the
full complex rheological response of blood over a range of
flow conditions. Recent reports have studied the case of pul-
satile flow of blood for different circumstances and with
different restrictions. Majhi and Nair (1994) modeled pulsatile
blood flow subjected to an externally imposed periodic body
acceleration using the Crank–Nicholson numerical method.

They considered blood as a third-order fluid. Massoudi and
Phuoc (2008) modeled the pulsatile flow of blood considering
the Fåhræus–Lindqvist effect, namely, the situation where the
blood near the wall behaves as a Newtonian fluid and in the
core as a non-Newtonian fluid. This effect causes the blood
viscosity in a capillary (<0.4 mm) to decrease as a conse-
quence of migration of red blood cells away from the capillary
walls. They considered blood as a modified second-order fluid
where the viscosity and the normal stress coefficients depend
on the shear rate. EL-Shahed (2003) reported on numerical
modeling of the pulsatile flow of blood through a stenosed
porous medium in the presence of periodic body acceleration.
Chen and Lu (2006) modeled numerically the non-Newtonian
pulsatile blood flow in a bifurcation with a non-planar branch.
They reported on non-Newtonian effects on the wall shear
stress, oscillatory shear index, and flow phenomena during
the pulse cycle. Prakash and Ogulu (2007) proposed a math-
ematical model for the pulsatile blood flow, in particular, the
case of blood flowing in a small vessel in the cardiovascular
system with a mild stenosis and considered heat transfer,
modeled as a power-law fluid. Razavi et al. (2011) reported
on the numerical simulation of the blood pulsatile flow in a
stenosed carotid artery using six different rheological models
(generalized power-law, modified Casson, Carreau, Carreau–
Yasuda, power-law, Walburn–Schneck). According to their
results, the power-law model produces higher deviations be-
cause it predicts viscosities far from Newtonian viscosities at
low and high shear rates. Tian et al. (2013) studied the effect of
atherosclerotic plaque size/geometry, Reynolds number, vis-
cosity and pulsations on the fluid wall shear stress and its
gradient, fluid normal stress, and flow shear rate by using a
simplified model to simulate a pulsatile non-Newtonian blood
flow past a stenosed artery caused by atherosclerotic plaques.
Reddy et al. (2014) modeled pulsatile blood flow through a
stenosed tapered artery in the presence of a catheter. Blood
was modeled as a non-Newtonian complex fluid by an equa-
tion of state with coupled structural kinetics. Nandakumar
et al. (2015) used a shear thickening model and reported on
the effects of percentage stenosis and Reynolds (steady flow)
and Womersley (pulsatile flow) numbers on the flow of blood
through a two-dimensional channel with stenosis, and the
results were compared with the Newtonian case. More
recently, Ghasemi et al. (2016) simulated numerically the case
of blood flow in coronary and femoral arteries. They consid-
ered blood as a third-order non-Newtonian fluid (viscoelastic)
under periodic body acceleration and pulsatile pressure gradi-
ent. Partial differential equations were solved by quadrature
and Crank–Nicholson numerical methods; both methods
showed good agreement in the predictions of the velocity
profiles. In all these pulsatile blood studies, blood viscosity
is considered to be dependent on shear (shear thinning fluid),
based on physical parameters or even rheometric data of blood
of laboratory rats (Massoudi and Phuoc 2008). Moreno et al.
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(2015) have reported the rheological behavior of blood, which
is more complex than a simple shear thinning fluid, and found
that the cholesterol content drastically modifies the rheology
of blood leading to complex phenomena such as yield stress
when cholesterol levels are high enough. Other authors (Brust
et al. 2013; Kolbasov et al. 2016) have studied the rheological
properties of blood in elongational flow which may become
important in forensic studies (blood dripping and splashing
patterns) or they may even lead to viscoelastic flow instabil-
ities. The type of blood used for these studies is human blood
plasma (Brust et al. 2013) and swine blood (Kolbasov et al.
2016). Moreover, different mathematical models have been
employed to model blood flow (two- and third-order fluids).
Here, we propose a mathematical model for blood flow using
the Bautista–Manero–Puig (BMP) equation of state, which
couples a codeformational Maxwell equation with a kinetic
equation for breakdown of the structure (Bautista et al. 1999;
Bautista and Soltero 2000; Bautista et al. 2002; Manero et al.
2002) which describes adequately the complex behavior of
human blood with different cholesterol levels (Moreno et al.
2015). Furthermore, there is lack of reports dealing with ana-
lytical solutions of pulsatile flow in non-Newtonian blood
fluids. In this regard, this work deals with the mathematical
predictions of Poiseuille flow with oscillating pressure gradi-
ent of a complex biological liquid, using the BMP equation of
state. In particular, the analysis of flow enhancement and yield
stress present in the blood flow through a rigid capillary is
included. This analysis aims to contribute to the understanding
of blood flow in a vein or artery.

Blood samples

Samples were obtained from donors in the National Institute
of Cardiology from research protocols of dyslipidemia and
other metabolic disorders. Blood was extracted by venipunc-
ture and later stored in tubes with EDTA to avoid coagulation.
These samples do not possess significant differences in the
hematocrit levels (the blood samples were selected for this
study with a hematocrit level of 42%). Two tubes of 5 mL
for each patient were collected. The first tube was used for
biochemical determinations of total cholesterol and

triglycerides. The second tube was kept the samples for rheo-
logical measurements which were readily performed during
the first few minutes after extraction.

Theoretical part

Continuity and momentum balance equations

Dρ
Dt

þ ∇·V ¼ 0 ð2Þ
∂
∂t
ρVþ ∇·T ¼ ρg ð3aÞ

T ¼ ρV⊗Vþ p tð ÞI−σ ¼ ρV⊗Vþ p 1þ εn tð Þð ÞI−σ ð3bÞ

The first equation is the continuity equation (mass conser-
vation), the second one is the momentum equation, and the
third one involves the deviatoric stress tensor T, which in-
cludes the pulsating pressure gradient. In these equations, ρ
is the density, V is the velocity, ⊗ is the dyadic product, D/Dt
is the material time derivative, p is the thermodynamic pres-
sure, g is the gravity acceleration, n(t) is a stochastic function
and, ε is a small parameter in the perturbation solution. Notice
that the formulation in terms of Eq. (3b) is general and in-
cludes other contributions such as (1) orientation, (2) vorticity,
(3) short and long interactions, (4) defects and textures, and so
on.

BMP constitutive equation

This constitutive equation contains an evolution term to ac-
count for structure modification (Fredrickson 1964; Bautista
et al. 1999). It is written in terms of a structural parameter
ς(ΙΙD) which depends on space and time, bounded by two
characteristic viscosities: the zero strain-rate viscosity η0 and
the high strain-rate viscosity η∞. This equation is coupled dy-
namically to a well-established non-linear rheological equa-
tion of state, the upper-convected Maxwell equation:

σþ ς ΙΙDð Þ
G0

σ
∇ ¼ σþ ς ΙΙDð Þ

G0

∂σ
∂t

þ V·∇σ− ∇VT·σþ σ·∇V
� �� �

¼ 2ς ΙΙDð ÞD ð4Þ

d

dt
ς ΙΙDð Þ ¼ ς ΙΙDð Þ

λ
1−

ς ΙΙDð Þ
η0

� �
þ kη∞

λ
σ−2y ς ΙΙDð Þ 1−

ς ΙΙDð Þ
η∞

� �
σ : D ð5Þ D ¼ 1

2
∇Vþ ∇VT
� 	

; ΙΙD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 D : Dð Þ

p
;σy ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kλ
.
η∞

r ð6a–cÞ
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In Eq. (4), σ is the viscoelastic stress tensor and the
superscript ∇ is the upper-convected time derivative. In
Eqs. (4 and 5), ς(ΙΙD) can be interpreted a scalar parameter
representing the flow-induced changes in structure with
limits of η0 (at low shear rates) and η∞ under fast flow. It
is important to note that the structural parameter ς(ΙΙD),
which has the same units as viscosity (Pa s), represents the
level of structure in the system. This structure parameter is
related to the number of entanglements, links, bonds, or
clusters at time t, and it can be associated with a viscosity
function (inverse fluidity) in the case of steady state and
homogeneous flow. Therefore, ς (IID) = η(IID). D is the rate
of deformation tensor which is symmetric part of the veloc-
ity gradient tensor, IID is the second invariant of the rate of
deformation tensor D, and G0 is the elastic modulus. In
Eq. (5), η0 and η∞ are the viscosities at zero and very high
shear rates, respectively, and can be rewritten in terms of the
product between the elastic moduli and the relaxation time at
low and high shear rates. The structural relaxation time λ is
related with the buildup mechanisms in the system after a
period of deformation. The material parameter k can be
interpreted as a kinetic constant, associated with the destruc-
tion processes. which in the case of blood are associated
with blood cell disaggregation processes, and it is propor-
tional to the irreversible work of structural breakdown (vis-
cous dissipation). Furthermore, all the material properties of
the simplest BMP model (η0, η∞, G0, λ, k) are related to the
fluid properties and can be estimated from independent rhe-
ological experiments in steady and unsteady flows. The vis-
cosity at lower and upper shear rates (η0,η∞) can be estimat-
ed through experiments in steady shear flow. The Maxwell
time and elastic modulus (η0/G0, G0) can be determined in
small-amplitude oscillatory shear flow. The kinetic constant
and structure time (k, λ) can be evaluated in stress relaxation
and flow inception experiments, respectively (Soltero et al.
1999; Calderas et al. 2009, 2013). The BMP model was
selected for this study due to its capacity of predicting
non-Newtonian blood behavior (Moreno et al. 2015).
Additionally, BMP predictions have been compared with
experiments in complex fluids and good agreement has been
found (Bautista and Soltero 2000; Bautista et al. 1999, 2002,
2007; Caram et al. 2006; Escalante et al. 2007; Herrera et al.
2009, Herrera-Valencia et al. 2010; Macias et al. 2003;
Manero et al. 2002, 2007; Moreno et al. 2015; Tabatabaei
et al. 2015). Analytical and numerical solutions for simple
shear, pulsating, and oscillating flows are obtained with this
model due to its simplicity as compared to more complex
models (Giesekus 1966; Acierno et al. 1976; Giesekus 1982,
1984, 1985; De Kee and Chan Man Fong 1994; Quemada
et al. 1981; Rao 2014; Sun and Kee 2001; Owens 2006;
Moyers-Gonzalez et al. 2008a, b, c) including hybrid
models using a White–Metzner constitutive equation
coupled to an ad hoc viscosity function and Oldroyd-B

viscoelastic models (Anand and Rajagopal 2004; Anand
et al. 2013), respectively. Recently, Tabatabaei et al.
(2015) have reported a comprehensive review paper on
the different and hybrid mathematical models.

Rheological characterization

Rheological tests were performed in a controlled stress
rheometer (AR-G2, TA® instruments) equipped with a
double concentric cylinder fixture adapted for 5 mL sam-
ples. The concentric cylinder geometry is useful in low
viscosity fluids, keeping uniform temperature and
preventing evaporation (a water seal was used), and the
velocity gradient in the gap is nearly constant. In the
parallel plates, on the other hand, a correction is needed
due to the non-homogeneous radial dependence of the
shear rate. In addition, the gap in this geometry needs to
be adjusted for each sample. The accuracy and reproduc-
ibility of rheological measurements can be affected by the
tendency of blood cells to sediment and by sample con-
finement size and geometry (Moreno et al. 2015). This
was minimized by performing the measurements right after
extraction and avoiding the use of the cone and plate
geometry (it is not recommended for suspensions due to
the aspect ratio effects of the red cells and gap). All
measurements were performed under increasing and de-
creasing steady state shear-rate protocols, i.e., each viscos-
ity points was taken under steady state (<0.5% variation)
and the time to reach steady flow varies depending on the
shear rate applied but in no case was set under 1 min.
The first step in all rheological tests is the applications of
pre-shearing with a shear rate of γ=1 s−1 to homogenize
the proteins in the plasma and red blood cells, in a period
of 1 min. Simple shear tests were performed from 1 to
30 s−1. The steady state for a given applied shear stress
was attained past the initial transients for each value of
stress, with a waiting time enough to obtain the time-
independent curve (Tropea et al. 2007).

Problem formulation

A schematic diagram of the pulsating flow is given in
Fig. 1. The isothermal rectilinear blood flow under a pul-
sating time-dependent pressure gradient system is ana-
lyzed in a circular pipe of radius r = a, and axial length
z = L. In this system, all physical quantities are defined in
cylindrical coordinates (r, θ, z) with respect to the origin at
the pipe center. In Eq. (3), the parameter ε is a small
perturbation parameter, i.e., ε < <1. The velocity field in
the capillary flow is given by V = [0, 0, Vz (r, t)], and the
shear stress tensor σ, velocity gradient ∇V, and shear
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strain tensors D = (∇V + ∇VT)/2 are given in the follow-
ing matrix form:

σ ¼
σrr 0 σrz

0 σθθ 0
σzr 0 σzz

0
@

1
A; 2D ¼ γrz

0 0 1
0 0 0
1 0 0

0
@

1
A ð7a; bÞ

Boundary conditions are the non-slip condition at the wall
Vz(r=a, t)=0 and the symmetry of the velocity ∂Vz(0, t)/∂r=0.

Dimensionless variables, groups, and equations

Non-dimensional variables

To simplify the momentum and constitutive equations, the
following dimensionless variables are introduced for the axial
velocity, pressure gradient, time, shear stress, shear rate, radial
coordinate, viscosity function, and frequency, respectively.

Vz* ¼ Vz

Vc
; p ¼ dp

dz

.pc
a
; t* ¼ t

tc
;σ*rzð Þ ¼

σ rzð Þ

η0
.
tc
;Q* ¼ Q

πa3
.
tc
; γ
• *

rz ¼ tc γrz
•

Ν *
1ð Þ ¼

Ν 1

Nc
¼ σrr−σθθ

Nc
;Ν *

2ð Þ ¼
Ν2

Nc
¼ σθθ−σzz

Nc
; r* ¼ r

rc
; ς* ¼ ς

ς0
; η* ¼ η

η0

ð8a–jÞ
To analyze the kinetic, structural, and viscoelastic mecha-

nisms, a characteristic time tc is defined as the inverse of the
characteristic shear strain in the system tc = a/<Vz>, Nc is the
characteristic normal stress difference given by Nc=η0/tc and
rc is the characteristic dimensionless radial lenght. This time-
scale selection enables a comparison with other characteristic
times associated to a given physical mechanism (structural
tc = a/<Vz>, viscoelastic, λ0=η0G0

−1, λ∞=η∞G0
−1, and rup-

ture times at low and high shear rate tr0 = kη0 ; tr∞ = kη∞,
respectively).

Non-dimensional groups

Using the previous expressions, the dimensionless compo-
nents of the momentum and constitutive equations are obtain-
ed. In addition, the following dimensionless groups are de-
fined. The first one is the dimensionless number B, defined as

B ¼ η0
η∞

¼ λ0

λ∞
¼ structural points at zero shear rate

structural points at infinite shear rate
ð9Þ

which is the ratio of the viscosities at low and high shear rates.
Fluids may be shear thinning (B > 1) or shear thickening
(B < 1). The second one is the dimensionless number
A0 = kη0/λ, which is a ratio between two timescales (the rup-
ture time at low shear rate and the structure time). When the
dimensionless number A0 is larger than one, the fluid structure
recovers faster than the rupture caused by the flow (Bautista
et al. 1999). It was shown that when the structural time is
larger than the Maxwell time, thixotropic loops are predicted,
since the structure of the fluid does not recover during the
deformation period, i.e., destruction of the structure is faster
than recovery (Bautista et al. 1999). One relevant case is when
the kinetic constant is equal to inverse of the elastic modulus
(k = 1/G0). In this case, the Deborah number De0 can be
identified with the dimensionless number A0.

A0 ¼
η0 Vzh i

.
a

� �2
1
.
kλ

¼ viscous irreversible work

kinetic structural irreversible work
ð10aÞ

Reynolds and Weissenberg numbers

We0 ¼ η0=G0

a= Vzh i ¼
viscoelastic mechanisms

process mechanisms
;

Re0 ¼ ρ Vzh ia
η0

¼ inertial mechanisms

viscous mechanisms

ð10b; cÞ

The third group is the Weissenberg number (We0), which
represents the ratio between a characteristic time (Maxwell
relaxation time which is associated to the viscoelastic proper-
ties of the fluid λ0 = η0G0

−1) and the characteristic buildup
time. WhenWe0 < <1, the viscous component dominates over
the elastic one. On the other hand, when We0 > >1, the oppo-
site behavior is observed (elastic). Finally, the fourth group is
the Reynolds number Re which relates the inertial and viscous
forces in the fluid. To analyze the effect of the three charac-
teristics numbers written in term of the viscosity at high shear
rate η∞, the following dimensionless numbers are defined:

A∞ ¼ B−1A0 ¼ η∞ Vzh i=að Þ2
1=kλ

;Re∞ ¼ B−1Re0

¼ ρ Vzh ia
η∞

;We∞ ¼ B−1We0 ¼ η∞=G0

a= Vzh i ð11aÞ

Here, the dynamics of the system can be described with
two dimensionless groups given by {Re0 = BRe∞, A0 = B
A∞} which form a material parametric space where the struc-
tural, viscous, and elastic mechanisms play an important role
in the description of the Poiseuille pulsating flow. The various

Fig. 1 Schematic representation of the flow system. A pulsating pressure
gradient drives the flow along the velocity direction (z)
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combinations used to study the effect of these dimensionless
groups are described in Fig. 2.

Bingham number

The Bingham number is the ratio of the yield stress and wall
stress.

Bi ¼
σ*
y

σ*
w∞

¼
1
. ffiffiffiffiffiffi

A∞
p

σ*
w∞

¼ yield stress mechanisms

wall stress mechanisms

¼
0 ¼ Bi; fluid
0 < Bi < 1; fluid−solid
Bi ¼ 1; solid
Bi > 1 ; yield stress

8>><
>>: ð11bÞ

When the yield stress is larger than the applied wall stress,
Bi ∈ [1, ∞), the system does not flow, and it flows otherwise.
The map of different combinations to study the effect of the
Bingham number (Bi) on the yield stress is described in Fig. 3.

Usual parameters of the BMPmodel for a model-structured
fluid (wormlike micellar solution) are summarized in Table 1
(for reference only).

Non-dimensional momentum equation

The non-dimensional momentum equation is

Re0
∂Vz* r*; t*ð Þ

∂t*
¼ −∇z*p*0 1þ εn t*

� 	� 	þ 1

r*
∂
∂r*

r*σ*
rzð Þ0 r*; t*
� 	� �

ð12Þ

The dimensionless boundary conditions are the (1) non-slip
condition and (2) the symmetry of the flow, respectively.

Vz* r* ¼ 1; t*
� 	 ¼ 0andγ

• *

rz 0; t*
� 	 ¼ ∂Vz* r*; t*

� 	.
∂r*

r*¼0

¼ 0 ð13a; bÞ

Non-dimensional components of the BMP equations

The relevant components of the BMP equation in non-
dimensional form are given by the following coupled partial
non-linear differential equations:

1þWe0η
*
0 γ

• *

rz

� � ∂
∂t*

� �
σ*rzð Þ0−We0σ

*
rzð Þ0Ν

*
2ð Þ0 ¼ η*0 γ

• *

rz

� �
γ
• *

rz ð14Þ
d

dt*
η*0 γ

• *

rz

� �
¼ η*0 γ

• *

rz

� �
1−η*0 γ

• *

rz

� �� �
þ A0η

*
0 γ

• *

rz

� �
1−Bη*0 γ

• *

rz

� �� �
σ*rzð Þ0γ

• *

rz:

ð15Þ
The second normal stress difference is considered negligi-

ble, and the first one is decoupled from the set of equations;

hence,We0η*0 γ•*rz
� 	

Ν*
2ð Þ0≅0:

Dimensionless flow rate

Integrating by parts, the flow rate can be expressed in the
following form:

Q* t*
� 	 ¼ ∫

2π

0
∫
1

0
Vz* r*; t*
� 	

r*dr*dθ¼ πVz* r* ¼ 1; t*
� 	

−π ∫
1

0
γ
• *

rzð Þ
� �

r*2dr*

ð16aÞ
Integration of Eq. (16a) gives the flow rate:

Q* ¼ ∫
1

0
−γ•

*

rzð Þ
� �

r*2dr* ¼ 1

3
−γ•

*

rzð Þ
� �

r*¼1
þ 1

3

� ∫
0

γ•*rzð Þ


r*¼1

r*3dγ
• *

rzð Þ

¼ 1

3
γ
• *

w þ 1

3
∫

−γ•*w

0
r*3dγ

• *

rzð Þ ð16bÞ

Fig. 2 Map showing the different combination of the proposed
dimensionless groups (A0, A∞, We0, B)

Fig. 3 Map showing the different combinations of the proposed
dimensionless groups (We∞,B

−1, Bi) to characterize the yield stress of blood
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In Eq. (16a), the non-slip condition at wall pipe/capillary
was used: Vz∗(r∗=1, t∗) = 0. Equations 16a and 16b give the
volumetric flow as a function of the wall stress and wall shear
strain, respectively.

Stochastic non-dimensional function

A non-dimensional stochastic function n(t∗) is considered, and
the pulsating flow equation is given in the non-dimensional
form (Eq. 12). It is assumed that the pulsating pressure gradient
is represented by a stochastic function n(t). This function repre-
sents random pulsatile oscillations of small amplitude.
Analytical progress is possible if n(t∗) is considered as a station-
ary random function of time (Phan-Thien 1978, 1980a, b, 1981,
1982; Phan-Thien and Dudek 1982a, b; Herrera et al. 2009;
Herrera-Valencia et al. 2010). The perturbation parameter ε is
small (<<1) and represents the amplitude of the perturbation
solution which is only valid for small amplitudes.

n t*
� 	 ¼ ∫

þ∞

−∞
Exp iαt*

� 	
dZ αð Þ; R sð Þ

¼ n t*ð Þn t* þ s
� 	D E

¼ ∫
þ∞

−∞
Exp iαsð ÞΩ sð Þdα ð17a; bÞ

where dZ (α) is an interval random function of α with zero
mean and uncorrelated increments

dZ αð Þh i ¼ 0; dZ αið ÞdZ α j

� 	D E
¼ δijΩ αið Þdα j;Ω sð Þ

¼ 1

2π
∫

þ∞

−∞
Exp −iαsð ÞR sð Þdα ð18a–cÞ

In Eqs. (17) and (18), 〈〉 denotes an ensemble average and
the overbar a complex conjugate quantity, δij is the Kronecker
delta andΩ(s) is the spectral density of n(t*). The absolute value
of R(s), i.e., ∣R(s)∣ tends to zero fast enough as the absolute
value of s goes to infinity (∣s∣→∞), a conditionmet bymost, if

not all, physically realizable processes. Particular stochastic
functions have been suggested (Phan-Thien 1978, 1980a, b,
1981; Phan-Thien 1981; De Andrade Lima and Rey 2005;
De Andrade Lima and Rey 2006). The simplest expressions
do not consider the effect of the harmonic contributions. Other
approaches have considered the effect of the harmonics through
Fourier expansions with different mathematical functions
(Phan-Thien 1978, 1980a, b, 1981, 1982). In this work, no
particular stochastic function is considered, since the approach
considered here is more general and it states that for any par-
ticular physical noise, the Weinner–Kitchen formalism is used
(Phan-Thien 1978, 1980a, b, 1981, 1982).

Perturbation scheme

Analytical expressions for the flow enhancement and power
requirements require a quasi-static perturbation solution in
terms of a small parameter (Barnes et al. 1969, 1971;
Manero and Mena 1977; Davies et al. 1978; Phan-Thien
1978; Mena et al. 1979; Manero and Walters 1980; Phan-
Thien 1980a, b, 1981; Phan-Thien and Dudek 1982a,
1982b; Herrera et al. 2009; Herrera-Valencia et al. 2010).
The dimensionless shear strain can be expressed in a power
series of the parameter ε:

γ
• *

rz r*; t*
� 	 ¼ ε0γ

• *

rzð Þ0 r*
� 	þ ε1γ

• *

rzð Þ1 r*; t*
� 	þ O ε2

� 	 ð19Þ

The dimensionless shear viscosity, stress, and flow rate can
be expressed in power series of ε (provided that ε < <1):

η* r*; t*
� 	 ¼ ε0η*0 r*

� 	þ ε1 γ
• *

rzð Þ1 r*; t*
� 	

η*
•

0 r*
� 	

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
η*1 r*;t*ð Þ

þO ε2
� 	 ð20Þ

σ*rzð Þ r*; t*
� 	 ¼ ε0σ*rzð Þ0 r*

� 	þ ε1 γ
• *

rzð Þ1 r*; t*
� 	

σ*
rzð Þ0
•

r*
� 	

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
σ*

rzð Þ1 r*;t*ð Þ

þO ε2
� 	 ð21Þ

Table 1 Material parameters
values of the BMP equation of a
wormlike micellar solution

BMP rheological
equation

Kinetic constant Restructuration
time

Elastic
moduli

Viscosity at
low shear rate

Viscosity at
high shear rate

Material
properties

k × 106 [Pa−1] λ [s] G0 [Pa] φ0 = 1/η0
[Pa−1 s−1]

φ∞ = 1/η∞
[Pa−1 s−1]

Shear thickening 39 0.14 185 0.0053 0.0002, 0.002

Shear thinning 39 0.14 185 0.0053 0.20, 1

Newtonian 39 0.14 185 0.0053 0.0053

Yield stress 39 0.14 185 0, 0.001, 0.001,
0.0053, 1, 10.5

10.5

Thixotropy 39 0.14, 0.10, 0.01,
0.001

185 0.0053 1
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Integrating Eq. (19) with respect to the cross section area,
the flow rate expansion is obtained:

Q* t*
� 	 ¼ − ∫

1

0
γ
• *

rz r*; t*
� 	

r*2dr* ¼ ε0 − ∫
1

0
γ
• *

rzð Þ0 r*
� 	

r*2dr*
 !

þ ε1 − ∫
1

0
γ
• *

rzð Þ1 r*; t*
� 	

r*2dr*
 !

þ O ε2
� 	
ð22Þ

where

Q* t*
� 	 ¼ ε0Q0 þ ε1Q1 t*

� 	þ :::þ ε jQ j t
*� 	 ð23Þ

The total flow rate and the jth flow rate contribution are
given by

Q* t*
� 	 ¼ − ∫

1

0
γ
• *

rz r*; t*
� 	

r*2dr*;Q*
j t*
� 	 ¼ − ∫

1

0
γ
• *

rzð Þ j r
*; t*

� 	
r*2dr* ð24a; bÞ

The Taylor theorem allows expressing σ*
rzð Þ j r

*; t*ð Þ and η*j
r*; t*ð Þ in terms of the derivatives of τ0(r

∗) and η*0 r*ð Þ, where-
in the shorthand notation has been used (Phan-Thien 1978,
1980a, b).

σ*rzð Þ
�

0
γ
• *

rzð Þ0
� �

¼ d
dγ•*rzð Þ0

σ*rzð Þ0 γ
• *

rzð Þ0
� �

; η*0
�

r*
� 	 ¼ d

dγ•*rzð Þ0
η*0 r*
� 	 ð25; 26Þ

It is important to note that the particular perturbation ex-
pansions for the viscosity and the shear stress are different
from other variables expansions, because it allows the

decoupling of the upper-convected Maxwell equation from
the kinetic equation of the BMP model. In addition, the flow
enhancement can be expressed in terms of the higher deriva-
tives of the shear stress and viscosity to zeroth order (Phan-
Thien 1978, 1980a, b; Phan-Thien and Dudek 1982a, 1982b;
Herrera et al. 2009; Herrera-Valencia et al. 2010). Details of
the perturbation scheme used to solve the problem can be
found elsewhere (Herrera et al. 2009; Herrera-Valencia et al.
2010).

Perturbation solutions

Zeroth order solution (homogeneous solution)

Substitution of Eqs. (19–21) in Eqs. (12–15) and equating
terms of the same order in the perturbation parameter, leads
to the zeroth order solution O (ε0):

σ*rzð Þ0 γ
• *

rz

� �
¼ η* γ

• *

rz

� �
γ
• *

rz ¼
A0γ•

*2
rz −1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A0γ•*2rz −1
� 	2 þ 4A0Bγ•*2rz

q
2A0Bγ•*2rz

γ
• *

rz:

ð27Þ
Notice that Eq. (27) was obtained from the condition of

steady state and homogeneous simple shear flow of the
BMP constitutive equation (Manero et al. 2002). In Eq. (27),

η* γ•*rz
� 	

is the viscosity function of the BMP equation and
the shear strain can be calculated from Eq. (27)

γ
• *

rz σ*
rzð Þ0

� �
¼ φ* σ*

rzð Þ0

� �
σ*

rzð Þ0 ¼
A0Bσ*2

rzð Þ0−1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A0Bσ*2

rzð Þ0−1
� �2

þ 4A0σ*2
rzð Þ0

r
2A0σ*2

rzð Þ0
σ*

rzð Þ0 ð28Þ

Wall shear strain

At small Reynolds numbers (Re0 < <1), integration with re-
spect to the radial coordinate of the shear stress and pressure
gradient gives

A0γ•
*2
rz −1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A0γ•*2rz −1
� 	2 þ 4A0Bγ•*2rz

q
2A0Bγ•*rz

¼ −σ*
w0r

* ð29Þ

In Eq. (29), σ*
w0 ¼ −σ*

rzð Þ0


r*¼1

is the wall stress and the

boundary condition σ*
rzð Þ0 ¼ 0 at r∗=0 has been used. The

wall shear strain is defined as the shear strain evaluated in

the radial coordinate r* = 1, i.e., γ•*w ¼ −γ•*rz

r*¼1

Flow rate

Substitution of the shear strain to zeroth order γ•*rzð Þ ¼ φ*

σ*
rzð Þ0

� �
σ*

rzð Þ0 in the integral expression of the flow rate

(Eq. 16a), the resulting expression, can be evaluated ap-
plying standards integral methods, as explained in the
“Appendix.” Finally, the flow rate is given by the follow-
ing analytical form:

Q*
BMP A0;B; σ*

w0

� � ¼ φ*
0 A0;B;σ*

w0

� � σ*w0
4

¼ φ*
0 A0;B; σ*

w0

� �
Q*

N ð30Þ
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where the dimensionless fluidity is given by

φ*
0 A0;B;σ*w0
� � ¼ 1

2
B−

1

A0σ*2w0
þ 1

2A2
0B

2σ*4w0
A0B2σ*2w0 þ 2−B
� 	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A0B σ*2w0−1
� 	2 þ 4A0σ*2w0

q� �
− 2−Bð Þ

� �

þ 2

A2
0σ

*4
w0

B−1
B3

� �
Log

2þ A0B2σ*2w0 þ B
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A0B σ*2w0−1
� 	2 þ 4A0σ*2w0

q
−1

� �
2





ð31Þ

Equation (30) represents the general expression for the di-
mensionless flow rate, which is obtained as the product of the
Newtonian flow rate and a generalized dimensionless fluidity
function (Eq. 31). This analytical function signals the depar-
ture from the Newtonian behavior through the dimensionless
numbers associated to a particular mechanism (shear thinning
and yield stress) in the complex system {A0, B}. This function
has the following analytical limiting values in terms of the
shear thinning, kinetic, and viscous mechanisms:

φ*
0 A0;B;σ*

w0

� � ¼
limσ*w0→0φ

*
0 ¼ 1

limA0→0φ
*
0 ¼ limB→1φ

*
0 ¼ 1

limσ*w0→∞φ
*
0 ¼ limA0→∞φ

*
0 ¼

B >> 1; shear thinning
B << 1; shear thickening

�
limB→0φ

*
0→0

8>>>>><
>>>>>:

ð32Þ

Yield stress

The shear stress function is given by

σ*
rzð Þ∞ γ

• *

rz

� �
¼ η*∞ γ

• *

rz

� �
γ
• *

rz

¼
γ•*2rz −A

−1
0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ•*2rz −A

−1
0

� 	2 þ 4 σ*2
y γ•*2rz

q
2γ•*2rz

γ
• *

rz ð33Þ

and the shear strain γ•*rz σ*
rzð Þ∞

� �
¼ φ*

∞ σ*
rzð Þ∞

� �
σ*

rzð Þ∞

γ
• *

rz σ*
rzð Þ∞

� �
¼ σ*

y

σ*
rzð Þ∞

.
σ*
y

� �2
−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ*

rzð Þ∞

.
σ*
y

� �2
−1

� �2

þ 4B−1 σ*
rzð Þ∞

.
σ*
y

� �2s

2 σ*
rzð Þ∞

.
σ*
y

� �2 σ*
rzð Þ∞

.
σ*
y

� �
: ð34Þ

The yield stress is controlled by the ratio σ*
rzð Þ∞=σ

*
y

� �
. In

the following section, the yield stress fluidity and flow rate are
analyzed.

Shear strain vs Bingham number

The velocity profile with yield stress and flow rate are calcu-
lated using the viscosity at high shear rates η∞ as a character-
istic viscosity, since the viscosity at low shear rates diverges
(fluidity tends to zero). The shear strain can be expressed as in
terms of the Bingham number Bi (Eq. 11):

γ
• *

rzð Þ ¼ −σ*
y

r*2−B2
i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r*2−B2

i

� 	2 þ 4B−1B2
i r*2

q
2Bir*

ð35Þ

The dimensionless shear stress r* can be interpreted as a
reduced shear stress which is bounded from zero to unity, i.e.,

r*∈ (0, 1] ⊂ R. When the reduced shear stress r* is equal to one,
i.e., r∗→Bi, the value of the shear strain is equal to

γ•*rzð Þ0→1=
ffiffiffi
B

p
≅0. Here, the axial velocity is independent of

the dimensionless radial coordinate.

Yield stress flow rate

In the yield stress case, the flow rate can be analyzed in two
situations, one of them under creeping flow and the other one
in the flow region:

Q* ¼ − ∫
0

Bi

γ
• *

rz r*
� 	

r*2dr*

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
yield stress zone

þ ∫
1

Bi

γ
• *

rz r*
� 	

r*2dr*

0
BBBBB@

1
CCCCCA≅− ∫

1

Bi

γ
• *

rz r*
� 	

r*2dr* ð36Þ
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Upon substituting the shear strain (as a function of the
Bingham number) into Eq. (36), the following expression
for the volumetric flow with yield stresses is obtained:

Q* ¼ φ*
∞ B;Bi½ � σ

*
w∞
4

⇔Q* ¼ B−1
i φ*

∞ B;Bi½ � σ
*
y

4
: ð37a; bÞ

Equation (37b) is expressed in terms of the yield
stress and the Bingham number, respectively, where
the dimensionless fluidity of Eqs. (37a and b) has the
following analytical form:

φ*
∞ B;Bi½ � ¼ 1

2B−4
i

B−4
i −1−2 B−2

i −1
� 	þ B−2

i þ 2B−1−1
� 	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B−2
i −1

� 	2 þ 4B−1B−2
i

q
− 2B−1� 	3.2 þ 4B−1 B−1−1

� 	
Ln

B−2
i þ 2B−1−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B−2
i −1

� 	2 þ 4B−1B−2
i

q
2B−1 þ 2

ffiffiffiffiffiffiffi
B−1

p



8<
:

9=
; ð38Þ

Note that the fluidity is used instead of the viscosity to
avoid the situation where the viscosity tends to infinity.
Equation (38) is the general yield stress fluidity function as-
sociated with the BMP constitutive equation. It is important to
note that the dimensionless groups associated with the yield
stress have the following asymptotic values:

B ¼
η0
η∞

¼ φ∞
φ0

→∞;B−1 ¼ η∞
η0

¼ φ0

φ∞
→0;→Bi→1 Hooke solidð Þ

η0
η∞

¼ φ∞
φ0

→1;B−1 ¼ η∞
η0

¼ φ0

φ∞
→1;→Bi→0 Newtonian fluidð Þ

8><
>: :

ð39Þ

The inverse of the dimensionless number B is related to a
maximum number of structural points in the system and to the
yield stress region. If the value of B (Eq. 47a) goes to infinity,
its inverse tends to zero and the system does not flow (Bi = 1),
corresponding to the yield stress case. In contrast, when the
inverse of the dimensionless B goes to one, the Bingham
number tends to zero and its behavior is that of a viscous fluid
(Bi = 0). It is important to note that the dimensionless numbers
(B−1, Bi) are not independent and satisfy the following linear
relationship: Bi(B

−1) =1−B−1⇔B−1(Bi) =1−Bi. The dimen-
sionless fluidity (39) has the following asymptotic limit:

φ*
∞ B;Bi½ � ¼ lim

Bi→0
φ*
∞ B;Bi½ � ¼ 1; lim

Bi→1
φ*
∞ B;Bi½ � ¼ 0 lim

B→∞
φ*
∞ B;Bi½ � ¼ lim

B−1→0
φ*
∞ B;Bi½ � ¼ 1−B4

i →0;Bi→1 lim
B→1

φ*
∞ B;Bi½ � ¼ lim

B−1→1
φ*
∞ B;Bi½ � ¼ 1

�
ð40Þ

When the Bingham number goes to one, Eq. (40) repre-
sents the case of a Newtonian liquid, whereas the second
equation is the case where the system presents the same struc-
tural points for any rate of deformation (Newtonian fluid), and
the dimensionless fluidity is a fourth power of the Bingham
number. In this case, the fluidity is one and zero for a
Newtonian fluid and elastic solid, respectively (see Fig. 3)

First-order perturbation

Flow rate to first order

Shear thinning

The first order in the perturbation ε, namely O (ε1), renders
σ*1 (r*, t*) = n(t*)σ0

*, and the shear strain is given by the
following expression:

γ
• *

1 r*; t*
� 	 ¼ n t*

� 	þWe0η
*
0 n

�
t*
� 	� � σ*

0

σ*
0
� ;σ*

0

�
≠0 ð41Þ

Integrating Eq. (41), the axial velocity in terms of the ma-
terial properties is obtained. However, we are interested in the
perturbation solution of the flow rate. If the last expression is
multiplied by the second power of the radial coordinate and
further integrating the expression from zero to one, the flow
rate equation is obtained:

Q*
1 A0;B;σ*

w0; t
*� � ¼ φ*

1 A0;B;σ*
w0; t

*� � σ*
w0

4
ð42Þ

where the first dimensionless fluidity is given by the following
expression:

φ*
1 A0;B;σ

*
w0; t

*� � ¼ n t*
� 	

φ*
V A0;B;σ*

w0; t
*� �

þ n
�
t*
� 	

We0 φ
*
E A0;B;σ*

w0; t
*� �
:

ð43Þ

The viscous and elastic contributions are given by
φ*
V;φ

*
E

� �
φ*
V A0;B; σ*w0; t

*� � ¼ 2

σ*4
w0

∫
σ*2w0

0

σ*3
0

σ*0
� dσ*

0;φ
*
E A0;B; σ*

w0; t
*� � ¼ 2

σ*4
w0

∫
γ•*2w

0
η*40 γ

• *2

0 dγ
• *2

0 :

ð44a; bÞ
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Taking the average of Eqs. (44a, b) and using the dimen-
sionless stochastic function given in Eq. (18), the following
analytical expression for the dimensionless pulsating fluidity
to first order is obtained:

φ*
1 t*
� 	� � ¼ 4

dQ*
0

dσ*
w0

n t*
� 	� � ¼ 4

dQ*
0

dσ*
w0

n t*
� 	� � ¼ dQ*

0

dQ*
N

n t*
� 	� � ð45Þ

Using the relationships of the dimensionless flow rate (see
“Appendix” for the mathematical deduction of Eqs. 45 and
46)

φ*
1 t*
� 	� � ¼ n t*

� 	� �
1þ dLnφ*

0 A0;B½ �
dLnσ*

w0

� �
φ*
0 A0;B½ � ð46Þ

Equations 45 and 46 are the expressions of the average
fluidity to first order. It is important to note that the pulsating
fluidity is determined by the derivative of the flow rate which
is multiplied by the average of the stochastic function defined
earlier. It can be calculated using the flow rate to first order
(Eq. 42).

Yield stress

The analytical expressions should be scaled by the fluidity at
high shear rate, since in the yield stress region the fluidity is
equal to zero. Using Eq. (46) and proceeding as before, the
average yield stress fluidity takes the following analytical
form:

φ*
1 t*
� 	� � ¼ 4

dQ*
0

dσ*
w∞

n t*
� 	� � ð47Þ

Applying the chain rule to Eq. (47), and following the same
procedure as before, the following expression for the yield
stress fluidity is obtained:

φ*
1 t*
� 	� � ¼ dQ*

0

dQ*
N

n t*
� 	� � ¼ 1þ dLnφ*

∞ B;Bi½ �
dLnBi−1

� �
φ*
∞ B;Bi½ � n t*

� 	� �
;Q*

N ¼ σ*
yB

−1
i

4

ð48Þ

Equation (48) has the same mathematical form of Eq. (46).
The average volumetric flow can be expressed in the follow-
ing reduced form:

Q*
1 A0;B;σ*

w∞; t
*� �� � ¼ σ*−1

y

dQ*
0

dB−1
i

n t*
� 	� � ð49Þ

Flow rate calculation requires carrying out the inverse
Bingham derivative of the yield stress flow rate of the BMP
model through the analytical expression (Eqs. 37 and 28).

Fluidity enhancement

In particular, the fluidity enhancement can be calculated as the
ratio of the fluidities to zeroth and first orders:

Ιφ %ð Þ ¼ 10
ffiffiffi
ε

p� 	2 φ*
1 Ax;B; t*ð Þ� �
φ*
x Ax;Bð Þ ; x ¼ 0;∞f g: ð50Þ

In particular, for the shear thinning fluids, the fluidity en-
hancement can be expressed in terms of the flow rate enhance-
ment, given by

ΙQ %ð Þ ¼ 10
ffiffiffi
ε

p� 	2 Q*
1 t*ð Þ� �
Q*

0

¼ n t*
� 	� �

10
ffiffiffi
ε

p� 	2
1þ dLnφ*

0 A0;B½ �
dLnσ*

w0

� �
ð51Þ

and for the yield stress, the fluidity enhancement is given
by

ΙQys %ð Þ ¼ 10
ffiffiffi
ε

p� 	2 Q*
1 t*ð Þ� �
Q*

0

¼ n t*
� 	� �

10
ffiffiffi
ε

p� 	2
1þ dLnφ*

∞ B;Bi½ �
dLnB−1

i

� �
ð52Þ

According to Eqs. (51–52) the shear-thinning fluidity en-
hancement is associated to the slope of the flow rate versus
wall stress curve, whereas in the yield stress case, it is associ-
ated to the slope of the flow rate versus inverse of the
Bingham number curve.

Local fluidity versus average fluidity

One way to compare the changes in fluidity to first order
with respect to the zeroth order fluidity is through Eq. (1)
associated to the flow enhancement. This ratio can be
expressed as

Ιφ %ð Þ ¼ 10
ffiffiffi
ε

p� 	2
n t*
� 	� � dQ*

0

.
dQ*

N

∫σ
*4
w0

0 φ*
0 A0;Bð Þdσ*4

rzð Þ0

.
∫σ

*4
w0

0 dα

¼ I0
local fluidity

average fluidity
:

ð53Þ

According to this perturbation scheme, the flow enhance-
ment is determined by the ratio of two fluidities. One of them
is associated with the local changes of the dimensionless flow
rate and the other one is associated with the dimensionless
average fluidity. In Eq. (53), the flow enhancement I0 is de-
termined by ε and the amplitude of the perturbation in the
stochastic function, i.e., I0 ¼ 10

ffiffiffi
ε

pð Þ 2 n t*ð Þh i. In general,
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the average fluidity can be expressed as an expansion in terms
of a power series of the fluidity as follows:

φ* A0;B; t*
� 	� � ¼ Q* t*

� 	.
Q*

N

D E
¼ ε0φ*

0 A0;Bð Þ þ ε1 φ*
1 A0;B; tð Þ� �þ O ε2

� 	 ð54Þ

Notice that Eq. (54) is completely general and can be ap-
plied for any particular constitutive equation in the sense of
the theory developed here. It then follows that the second-
order dimensionless fluidity would be related to the convexity
of the function associated with the dimensionless flow rate.

Time average energy

The non-dimensional work is defined as W* t*ð Þ ¼ −2Q*
0 t*ð Þ

σ*
w0 1þ εn t*ð Þð Þ (where Q0 (t) is the flow rate) and −2σ*w0
1þ εn t*ð Þð Þ is the axial component of the pulsating pressure
gradient. The fractional increase in energy IE (%) is given by

IE(%) = 100 (<W*(t*) > −W0
*)/W0

*, whereW*
0 ¼ −2Q*

0σ
*
w0 is

the power required to pump the fluid without pulsations and
<W*(t*)> is the average power with pulsatile flow.

IE %ð Þ ¼ 100
W* t*ð Þ� �

−W*
0

P*
0

¼ 100
2Q* t*ð Þσ*w0 1þ εn t*ð Þð Þ� �

−2Q*
0σ

*
w0

2Q*
0σ

*
w0

ð55Þ

Simplifying the last expression and splitting contributions
to zeroth and first orders while the series given in Eqs. (23) is
substituted into Eq. (55), the following expression is obtained:

IE %ð Þ ¼ 100ε
Q*

1 t*ð Þ� �
Q*

0

þ 100ε n t*
� 	� �

¼ IQ %ð Þ þ I0 %ð Þ > 0 ð56Þ

The last expression is given by the sum of two contribu-
tions: (1) the energy associated to the flow enhancement IQ
(%) (Eqs. 1) and (2) a small energy I0 (%) contribution related
to the perturbation parameter and the average of the stochastic
dimensionless function n (t*). This means that the energy of
the pumping fluid is always positive.

Pulsating energy and viscous energy (dissipated
energy)

Since the flow enhancement caused by the pulsating pressure
gradient represents an energetic advantage, we define a pul-
sating work as

W*
pulsating

D E
¼ − φ*

1 A0;B;σ*
w0; t

*� �� �
σ*2w0

.
2 ð57Þ

which should dominate over the fluid dissipation (vis-
cosity). The total work associated with the pulse and the
viscous mechanisms is given by the following mechan-
ical balance:

ΔW*� 	
sist

¼ W*
pulsating

D E
−W*

viscous ð58Þ

Should an energetic advantage exist, the total work change
must be zero, i.e., (ΔW∗)sist = 0, and therefore the energy as-
sociated with the viscous mechanismwould be the same of the
pulsating energy:

W*
viscous ¼ W*

pulsating

D E
¼ − φ*

1 A0;B;σ*
w0; t

*� �� �
¼ 8

dQ*
0

dQ−1
N

n t*
� 	� � ð59Þ

As demonstrated in the simulations (Figs. 9, 10, 11,
16, and 17), the effect of the pulsating pressure gradient
is to decrease the irreversible work associated with the
viscous dissipation. As a partial conclusion, this may be
the reason by which some biological systems employ
pulsating mechanisms to compensate the dissipation
processes.

Results

Theoretical predictions

In this section, the simulations of the analytical results
of the BMP constitutive equation for the case of pulsa-
tile flow of blood at zero and first orders are presented.

Zeroth order theory

Shear-thinning and shear-thickening mechanisms

At low shear strain, the fluidity is constant (first
Newtonian region) for all cases and coincides with the
Newtonian curve (see Fig. 4, case c). The system is
highly structured, and the value of the dimensionless
number B is equal to unity. The response is independent
of the ratio between the structural relaxation time and
the viscoelastic flow. At a critical value of the dimen-
sionless wall stress, the fluidity increases monotonically,
attaining a constant value at a second critical wall stress
(second Newtonian region corresponding to a structure
aligned completely to the flow direction, see Fig. 4
cases a and b). The value of the dimensionless numbers
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{A0, B} employed in the simulation are displayed in
Table 2. For the cases d and e in Fig. 4, the system
attains a highly structured state, displaying a monotoni-
cally increasing power-law region with a slope close to
unity at moderate wall stresses, followed by a constant
value at high wall stress (second Newtonian zone). The
values of the dimensionless numbers {A0, B} are always
less than one and larger than one, respectively (A0 < <1,
B > >1). It is important to note that, for zero order, no
flow enhancement is predicted. The following predic-
tions (Figs. 4, 5, 6, and 7) correspond entirely to the
unperturbed steady simple shear flow with a constant
pressure gradient.

Figure 5 shows the flow rate as a function of the wall stress
for different shear thinning and thickening conditions as the
number B varies.

At a critical dimensionless wall stress, the flow rate
increases sharply from a Newtonian reference curve (con-
stant slope curve) to a power-law region of continuous
increasing slope behavior (Fig. 5, curves a and b). In
the case of the shear-thickening fluids (curves d and e),
the system departs from the Newtonian curve displaying
smaller flow rates with a power-law tendency. It is impor-
tant to note that the flow rate is a function of the physical
interactions associated with the structure of a complex
fluid, and for the case of blood, the aggregation–disaggre-
gation mechanism of blood cells caused by flow is
reflected through the A0 and B numbers.

Thixotropy

Figure 6a, b shows the fluidity (a) and viscosity (b), for several
values ofA0 (which accounts for the ratio of kinetics of rupture
to the structure time) and B (ratio of Newtonian viscosities, at
low and high shear rate). In Fig. 6a, all curves show an initial
constant fluidity (first Newtonian zone) and at a critical wall
stress, the fluidity increases sharply followed by a second
constant fluidity (second Newtonian region). Upon increasing
A0, the critical transition is shifted to lower wall stresses.
Figure 6b shows the corresponding curves of flow rate versus
wall stress.

To analyze the effect of the thixotropy and rheopexy
(Figs. 5a, b, 6a, b), the value of the kinetic constant is changed

to k = G0
−1, enabling A0 to be the ratio A0 ¼ η0G

−1
0

� 	
=λ when

Fig. 4 Dimensionless fluidity as a function of the dimensionless wall
stress for shear- thinning and shear-thickening conditions varying B for
fixed A0. Numerical values of the BMP parameters and dimensionless
numbers are given in Tables 1 and 2

Table 2 Magnitude of the dimensionless numbers

Dimensionless
numbers

A0 ¼ kλη0
t2c

A∞ ¼ kλη∞
t2c

B ¼ η0
η∞ A0 ¼ λλ0

t2c
;

k ¼ G−1
0

A∞ ¼ λλ∞
t2c

;

k ¼ G−1
0

Shear thickening 0.13727 0.00518
0.0518

26.5
2.65

Shear thinning 5.18 25.9 0.2

Newtonian 0.13727 0.13727 1

Yield stress 0.00259
0.0259
0.13727
25.9
271.95

271.95 9.52 × 10−6

9.52 × 10−6

5.04 × 10−6

0.0952381
1

Thixotropy 185
18.5
1.85
0.185

9.85 x 10-1

9.85 x 10-2

9.85 x 10-3

9.85 x 10-4

1
10
50
100

Characteristic time tc = a/〈V〉≅λ. In wormlike micellar systems: k ¼ 1=G0
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λ = tc. When the value of A0 lies in the range A0∈ (0, 1)⊂R, the
structure does not recover during the deformation period. In

contrast, when the value of A lies in the range 1≤A0 ¼
η0G

−1
0

� 	
=λ, the structure recovers rapidly by the effect of the

flow. It is important to note that the shape of the thixotropic and
rheopexy loops is determined exclusively by the value of A0.

Yield stress mechanisms

In Fig. 7, the fluidity (Fig. 7a) and flow rate (Fig. 7b) are
plotted with the Bingham number. For low values of the
Bingham number (Bi < <1), the fluidity is equal to one
(Newtonian region).When the Bingham increases, the fluidity
decreases (tending asymptotically to zero) as Bi tends to one,
since the system is near the yield stress (elastic solid state). In
Fig. 7b, for small Bingham numbers (Bi < <1) the flow rate

Fig. 5 Dimensionless flow rate as a function of the dimensionless wall
stress for shear-thinning and shear-thickening conditions varying B for
fixed A0. Values of the BMP parameters and dimensionless numbers are
given in Tables 1 and 2

Fig. 6 a Zero-order fluidity as functions of A0 for shear-thinning
conditions (B = 0.0377). Values of the BMP parameters and
dimensionless numbers are given in Tables 1 and 2. b Flow rate as
functions of A0 for shear-thinning conditions (B = 0.0377). Values of the
BMP parameters and dimensionless numbers are given in Tables 1 and 2

Fig. 7 Fluidity (a) and flow rate (b) versus Bingham number. a The inset
shows a map with different cases of the Bingham number. b The effect of
the yield stress for the shear thickening case is shown. BMP parameters
and dimensionless numbers are given in Tables 1 and 2
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decreases as a power-law (constant slope), while at a critical
Bingham number, the flow rate tends to zero abruptly.

Pulsatile shear thinning mechanism

First order theory

Figure 8 shows model predictions of the fluidity versus wall
stress for various values of B (which relates the zero shear-rate
viscosity to the maximum shear-rate viscosity). Curves 8a and
8b correspond to a shear thinning fluid with B > 1. Curve c
corresponds to the Newtonian fluid (B = 1) and curves d and e
correspond to the shear thickening fluid (B < 1). The effect of
the pulsations can be observed in the maxima in the fluidity
displayed by the shear-thinning fluid at intermediate shear
rates (curves a and b) and the minima displayed by the
shear-thickening fluid (curves d and e). The Newtonian fluid
is unaffected by the pulsations. The pulsatile flow has a flow
enhancement effect on the system by increasing the fluidity
(viscosity reduction) in the region where the fluid becomes
shear thinning. Thereafter, this effect disappears as the second
Newtonian region is approached at high shear rates. In the
case of the shear thickening fluid, the opposite effect is ob-
served, where minima appears at the onset for shear thicken-
ing and vanishes as the second Newtonian region is
approached. To our understanding, this is the first time that
the flow enhancement is explained in terms of an increase in
the fluidity which leads to an increase in the flow rate. This
mechanism may be associated with the optimum pumping
work of the heart associated with a variable pressure gradient,
implying an optimized process of energy consumption.

Since the blood behaves as a shear thinning fluid,
this case will be examined in detail. In Fig. 9, the
fluidity versus wall stress for a shear thinning fluid is
plotted. The case of the constant pressure gradient (zero
order, PG) is compared to the case of the pulsatile pres-
sure gradient (first order prediction, PPG). The former
displays a smooth transition from the constant fluidity at
low wall stress values to that corresponding to the sec-
ond Newtonian region.

To clearly expose effect of shear thinning upon the
magnitude of the flow enhancement, Fig. 10 depicts the
flow rate variation with wall stress for two shear thin-
ning cases.

Curves in Fig. 11 shows a maximum flow enhancement in
the region where the fluid exhibits shear thinning (power law

Fig. 8 Pulsating fluidity as a function of the wall stress for various shear-
thinning (a, b) and shear thickening (d, e) conditions corresponding to
different values of the parameter B. The BMP parameters and
dimensionless numbers are given in Tables 1 and 2

Fig. 9 Pulsating fluidity as a function of the wall stress for various shear-
thinning conditions. The BMP parameters and dimensionless numbers
are given in Tables 1 and 2

Fig. 10 Fluidity enhancement versus wall stress for various shear-
thinning fluids. BMP parameters and dimensionless numbers are given
in Tables 1 and 2
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region). In the regions of low and highwall stresses (correspond-
ing toNewtonian viscosities at low and high shear rate), the fluid
exhibits no flow enhancement. The value of the maximum is
dependent on the strength of shear thinning, with the highest
value corresponding to the fluid with strongest shear thinning.

Yield stress mechanisms

Figure 12 shows the flow rate as a function of the Bingham
number for the first order approximation (dotted line). In this
case, there is an increase in the flow rate at high values of the
Bingham number which is caused by the pulsations, since
without pulsations (continuous line), no increase is observed
(see Fig. 4 cases a and b). The effect of the pulse is evident
only in the region near the yield stress (Bi = 1). The maximum
is higher depending on the strength of shear thinning.

Figure 13 shows the fluidity enhancement as a function of
the wall stress. The effect of B (ratio of the zero shear-rate
viscosity to the infinity shear-rate viscosity) is to shift the
maximum fluidity enhancement to the left. This number also
controls the magnitude of the fluidity enhancement since it is a
measure of the strength of the shear-thinning mechanisms.

Predictions of the fluidity enhancement using data
for blood with different cholesterol levels

In this section, the fluidity enhancement is predicted in real
human blood data with low, intermediate, and high cholesterol
levels. To give a brief description, reversible changes in the
structure that may occur at low shear rates are neglected.
Material parameters are given in Tables 3 (BMP model pa-
rameters) and 4 (rheometric data). Parameters in Table 3 were
fitted with an algorithm programmed in Mathematica 10.

Typical blood radius of veins varies from 0.02 to 0.35 cm
and the density of the blood is approximately 1.05 g/cm3,
respectively (Del Rio et al. 1998). The characteristic dimen-
sionless shear rate can be calculated from rheometric data:

0:085 s−1 ¼ Vh i
amax

¼ γ
�
car

� �
min

≤γ� car≤ γ
�
car

� �
max

¼ Vh i
amin

¼ 1:5 s−1

The ratio of inertial and viscous forces can be calculated
through the Reynolds number, i.e.,

0:0051 ¼ ρ Vh iamin

η0
¼ Remin≤Re≤Remax ¼ ρ Vh iamax

η0
¼ 0:191

Since the Reynolds number is less than unity, inertia is
small.

Fig. 11 Fluidity enhancement versus wall stress for two shear-thinning
fluids. BMP parameters and dimensionless numbers are given in Tables 1
and 2

Fig. 12 Flow rate versus Bingham number for two yield-stress fluids.
The parameters used in the simulation are given in Tables 1 and 2

b

a

Fig. 13 Fluidity enhancement versus wall stress for a shear-thinning
fluid. The parameters used in the simulation are given in Tables 1 and 2
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Figure 14 shows the BMP predictions intended to fit the
low shear rate region of the viscosity curves with various
cholesterol levels. Only one mode of the model is employed
with parameters shown in Table 3. As reported by Moreno
et al. (2015), three modes are necessary to fit the whole range
of data up the high shear rate zone. The main mode describes
the data along the low and moderate shear regions, where the
yield stress arises. Blood fluidities predictions for real human
blood are depicted in Fig. 15, where the solid line represents
the zero-order approximation (no flow enhancement) and the
dotted line represents the first-order predictions. As the cho-
lesterol content increases, the fluidity increase is more evident
since cholesterol induces stronger shear thinning.

The comparison of the fluidity enhancement maxima for
blood with different cholesterol levels is depicted in Fig. 16.
The inset in Fig. 16 shows the results for the energy enhance-
ment which are directly related to the fluidity enhancement as
defined in Eq. (72). As the cholesterol content increases, the
energy enhancement maxima is larger, evidencing that for this
particular solution, an energetic advantage of the pumping
work exists (optimization of the pumping work by compen-
sating the viscous dissipation of the fluid) under oscillating
conditions.

Results of flow rate are depicted in Fig. 17 where the larg-
est increase in flow rate is observed in the sample with high
cholesterol content. Again, the increase in flow rate is ob-
served only in the shear-thinning region of the fluid (power-

law region). In the low and high wall stress regions, corre-
sponding to the Newtonian plateaus, no difference is observed
between the constant pressure gradient and pulsatile pressure
gradient cases.

Conclusions

In this work, a perturbation solution to a pulsating pressure
gradient flow of blood using the BMP constitutive equation is
analyzed for a general class of pressure gradient noises, com-
paring results for the zero and first order approximations. The
following conclusions are summarized:

(a) The fluidity enhancement predicted by the BMPmodel can
be separated into two contributions: viscous and viscoelas-
tic, where both are function of the amplitude of the pulsating
pressure gradients and the dimensionless parameters asso-
ciated to the shear thinning and yield stress mechanisms.

(b) The fluidity enhancement is determined by a ratio of a
local fluidity and an average integral fluidity.

(c) A necessary condition to obtain a fluidity enhancement
in a structured fluid is that the fluid undergoes transitions

Table 3 Material parameters values of the BMP equation

Material properties Kinetic constant Restructuration time Elastic moduli Viscosity at low shear rate Viscosity at high shear rate

k Pa−1
� �

λ s½ � G0 Pa½ � η0 Pas½ � η∞ Pas½ �

Low cholesterol 114 mg/dL 0.90 0.810 1. 487 0.0113 0.009

Medium cholesterol 174 mg/dL 0.74 1 1.472 0.023 0.0042

High cholesterol 300 mg/dL 0.19 0.884 1.834 0.046 0.0047

Fig. 14 Rheometric flow data of blood with different cholesterol
contents. Continuous lines show predictions of the BMP model, using
the parameters shown in Table 3

Fig. 15 Fluidity versus wall stress for shear thinning fluids. L,M, and H
correspond to cholesterol content (low, medium, high). Solid lines
correspond to the zero order fluidity (no flow enhancement), and
discontinuous lines correspond to the first-order solutions of the fluidity
(flow enhancement). Parameters and dimensionless numbers used in the
simulation are given in Tables 3 and 4
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from a high-structured state to a less structured one in-
duced by flow, namely, B=η0/η∞> >1. The flow curve
must contain a power-law zone.

(d) The viscoelastic, kinetic, and structural mechanisms in
the BMP model were characterized by dimensionless
groups assigned to each mechanism.

(e) In a biological liquid, thixotropy can be interpreted as a
particular case of the rupture and structural mechanisms
in the fluid, namely, A0 =λλ0(〈Vz〉/a)

2, where the kinetic
constant is the normalized constant for the shear stress,

i.e., k ¼ G−1
0 .

(f) The fluidity enhancement was found to be directly related
to the concentration of cholesterol in blood samples, with

the sample with high cholesterol content showing the
largest values of the fluidity enhancement.

(g) The yield stress to zero order shows a constant behavior
when the Bingham number tends to zero (Newtonian
Fluid) and a complex solid behavior when the Bingham
number is close to one.

(h) The yield stress is predicted to be controlled by two dimen-
sionless numbers {Bi, B

−1}, which are related to the shear
thinning and thickening processes through the fluidities
ratio. Both dimensionless numbers are linearly linked.

(i) The effect of the pulsating pressure is seen at the transi-
tion from low to high-structured states, i.e., when the
Bingham number is close to one.

The non-linear model presented here is only valid for a
pressure gradient noise of sufficiently small amplitude.
For the particular solution presented here, there is an en-
ergetic advantage of the pumping work, which is opti-
mized by a fluidity enhancement caused by the oscillating
pressure gradient, which compensates the viscous dissipa-
tion of the fluid. This effect is directly related to the cho-
lesterol content of blood.

Future work

It would be worthwhile to compare the theoretical predictions
of the effect of the kinetic, viscoelastic, and rupture mecha-
nisms by using human blood with different human patholo-
gies such as (1) diabetic blood, (2) anemic blood, and (3)
umbilical cord blood (Bureau et al. 1979, 1980).

Fig. 17 Flow rate as a function of
wall stress for various fluids with
varying cholesterol content. The
parameters and dimensionless
numbers are given in Tables 2 and
3

Fig. 16 Fluidity enhancement versus wall stress for blood with different
cholesterol content: LC low, MC medium, and HC high cholesterol
content. The parameters and dimensionless numbers used in the
simulation are given in Tables 2 and 3
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Analysis of the combined pulsating and oscillating flow on
the fluidity functions coupled with viscous dissipation in com-
plex flows deserves further analysis.

Extension of these rheological equations in the linear and
non-linear oscillatory flow with the contributions of Fourier
formalism (higher harmonics) is an important issue that de-
serves future research on pulsating flow.

Finally, this work aims to model pulsating biological flows
(blood with cholesterol). Further investigations should deal
with other relevant flow conditions (elongation, oscillatory
flows, and flow instabilities) to fully describe a realistic blood
flow system.
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Appendix
Derivation of the flow rate using the BMP fluid
in a cylindrical tube

In this appendix, the overall calculation of the flow rate is
presented. Substitution of the shear strain to zero order in the
equation for the flow rate, the following expression is obtain-
ed:

Q*
0 ¼

1

2A0σ*w0
∫
1

0
A0B σ*w0r

*� 	2−1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A0B σ*w0r*

� 	2−1� �2
þ 4A0 σ*w0r*

� 	2r !
r*dr*

ð60Þ

Upon a change of variables U ¼ A0 σ*
w0r

*
� 	2

; r*dr*

¼ dU=2A0σ*2
w0, the flow rate is given by the expression

Q*
0 ¼

1

4A2
0σ

*3
w0

∫
A0σ*2w0

0
BU−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BU−1ð Þ2 þ 4U

q� �
dU

¼ 1

4A2
0σ

*3
w

A2
0B
2

σ*4
w0−A

2
0σ

*2
w0 þ BI

� �
; ð61Þ

solving the previous integral:

I ¼ ∫
A0σ*2w0

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U−φBð Þ2 þ 4 φ2

BU
q� �

dU : ð62Þ

The integral kernel can be changed in the same form as for
the axial velocity:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U−φBð Þ2 þ 4φ2
BU

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U 2 þ 2φB 2φB−1ð ÞU þ φB 2φB−1ð Þð Þ2 þ φ2

B− φB 2φB−1ð Þð Þ2
q

ð63Þ

The constants are given by

δ21 ¼ φ2
B− φB 2φB−1ð Þð Þ2 ¼ φB þ φB 2φB−1ð Þð Þ φB−φB 2φB−1ð Þð Þ ¼ 4φ3

B 1−φBð Þ
δ2 ¼ φB 2φB−1ð Þð Þ2; δ21 þ δ2 ¼ φ2

B

ð64Þ

Substituting the previous definitions into the integral, and
applying the same change of variables in the integral, i.e.,U+
δ= δ1tanθ; dU= δ1sec

2θ, we obtain

I ¼ ∫
A0σ*2w0

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U þ δð Þ2 þ δ21

q� �
dU ¼ δ21 ∫

A0σ*2w0

0
sec3θdθ

¼ 1

2
secθtanθþ Ln secθþ tanθj jð Þ ð65Þ

The last integral can be calculated directly using a partial
cyclical integration, according to the following variable
change: U=secθ ; dV= sec2θdθ, and the result is inserted in
the general expression of the volumetric flow rate (Eq. 61).
Upon changing the U variable in terms of the dimensionless
numbers and wall stress, the analytical volumetric flow rate is
obtained as a function of the dimensionless numbers discussed
previously (Eqs. 25a and 31). It is important to mention that
the control variable is the flow rate and gives rise to a non-

linear algebraic equation Ω :R3→R1; Ω A0;B;σ*
w0

� � ¼ Q*
BMP

A0;B;σ*
w0

� �
−Q*

N � φ*
0 A0;B;σ*

w0

� �
. Given the numbers {A0,

B} from the rheometric data and the flow rate Q A0;B;σ*
w0

� �
,

the pressure gradient can be calculated using a standard itera-
tive produce such as Newton–Raphson:

p*0−p
*
L ¼ ∫

L*

0
σ*
w0dz

* ¼ −
1

2
∫
L*

0
∇*p*dz*: ð66Þ

Table 4 Dimensionless numbers obtained from rheometric blood data

Dimensionless numbers
A0 ¼ kλη0

t2c
A∞ ¼ kλη∞

t2c
B ¼ η0

η∞
We0 ¼ η0

G0
t−1c σ*

y ¼ 1=
ffiffiffiffiffiffi
A∞

p

Low cholesterol 114 mg/dL 0.0125 0.010 1.250 0.0061 10.0

Medium cholesterol
174 mg/dL

0.0170 0.0031 5.476 0.0156 17.94

High cholesterol 300 mg/dL 0.0098 0.0010 9.703 0.0222 31.47

Characteristic time tc = a/< V > ≅ λ
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