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Abstract We propose a methodology to approximate the
viscosity of multicomponent suspensions. The procedure
consists of successive applications of expressions for the
viscosity of binary mixtures, originally written as the prod-
uct of monomodal stiffening functions. First, the viscosity
of a binary mixture made of the two smallest components
is calculated. This allows to extract a volume fraction that
will be used, together with the volume fraction of the third
component, to feed the next iteration of the procedure to
calculate the viscosity of a trimodal mixture and so on. The
application of this approach to arbitrary mixtures requires
the detailed knowledge of the geometry of the system in
the form of size ratios and compositions. When this infor-
mation is unknown, an approximation of the model can
still be used as a fitting tool. With that purpose, the final
expression for the viscosity is written in terms of an effec-
tive volume fraction that is further approximated by the use
of a (1,2) Padé approximant. This approximation allows to
incorporate the crowding effects due to different species in a
volume fraction-dependent crowding factor that can be used
as a fitting parameter to match experimental or simulation
data. We have applied the model to mixtures of particles
with different sizes and tested its accuracy comparing with
experimental results obtaining very good agreement.
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Introduction

Suspensions of colloidal particles are present in everyday
life and plays a mayor role in many technological applica-
tions. The study of their rheological properties has received
a lot of attention since in many cases its precise control is
essential. In particular, there have been many experimental,
theoretical, and numerical works studying the viscosity of
suspensions. Most of the models describe the viscosity as
a function of the concentration for monomodal suspensions
of particles of a single kind (Einstein 1906, 1911; Maron
and Pierce 1956; Krieger and Dougherty 1959; Quemada
1998). However, in practice, most suspensions are mixtures
of particles with different shapes, sizes, porosities, elec-
tric charge or other physical and chemical properties that
may be important in predicting the viscosity of suspensions
(Shewan and Stokes 2015). Thus, the interest to study sus-
pensions consisting of mixtures of such particles. In spite
of the large amount of work on this subject (Furnas 1931;
Eveson 1959; Hoffman 1992; Sudduth 1993a, b; Chang
and Powell 1994; D’Haene and Mewis 1994; Wagner and
Woutersen 1994; Greenwood et al. 1997; Dames et al. 2001;
Lionberger 2002; Núñez et al. 2002; Servais et al. 2002;
Mwasame et al. 2016a), the problem to predict the struc-
ture and flow properties of general mixtures is still an open
problem.

The addition of particles to a homogeneous isotropic
fluid increases the viscosity of the resulting suspension. In
the case of a dilute suspension of identical particles, the vis-
cosity η (φ) as a function of the volume fraction φ of the
particles was first derived by Einstein (1906, 1911) and is
given by the expression

η (φ) = η0 (1 + [η]φ) , (1)
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where η0 is the viscosity of the original fluid and [η] is
the intrinsic viscosity, which is a single particle property
that depends on factors such as shape, porosity, and electric
charge ([η] = 5/2 for hard spheres).

Several models have been proposed in order to extend
Einstein’s expression to larger volume fractions. Due to the
formidable difficulty to incorporate the many body nature
of non-dilute systems in the calculation of rheological quan-
tities such as the shear viscosity of the system, simplifying
strategies have been devised to include in an approximate
way all these contributions. A very successful approach con-
sists in treating the hydrodynamic interactions by means
of a recursive differential procedure in which particles
are progressively incorporated to the suspension while the
crowding effect are contained in an effective volume fraction
φeff . This procedure leads to an universal representation
of all experimental results in a master curve for η vs. φeff

indicating that φeff is a natural variable for these systems
(Mendoza and Santamarı́a-Holek 2009). This differential
effective medium technique (DEMT) has been applied to
suspensions of hard spheres (Mendoza and Santamarı́a-
Holek 2009), emulsions of spherical droplets (Mendoza and
Santamarı́a-Holek 2010), suspensions of arbitrarily shaped
hard particles (Santamarı́a-Holek and Mendoza 2010), sus-
pensions of permeable particles (Mendoza 2011), suspen-
sions of soft (inter-penetrable) particles (Mendoza 2013),
and suspensions with power-law matrices (Tanner et al.
2010), with excellent results. This model has been extended
to consider multimodal suspensions with a dominant large
particle composition (Qi and Tanner 2011, 2012). Other
recent advances include the development of a simple ana-
lytic approximation for the viscosity of any size distribution
of hard spheres (Farr 2014), a crowding-based model for the
case of bimodal-sized particles with interfering size ratios
(Faroughi and Huber 2014), and models for the case of poly-
disperse non-colloidal hard sphere suspensions (Dörr et al.
2013; Mwasame et al. 2016b).

The purpose of the present work consists in extending
previous models (Mendoza and Santamarı́a-Holek 2009;
Santamarı́a-Holek and Mendoza 2010; Faroughi and Huber
2014) to treat the case of mixtures of particles with a diver-
sity of intrinsic viscosities including mixtures of particles
with different shapes, sizes, or porosities. We compare the
resulting expressions with experimental data for the low
shear viscosity of bimodal mixtures of non-colloidal hard
spheres, with experimental results for the Bingham viscosity
of a coal slurry, and with the high shear viscosity of polydis-
perse colloidal dispersions, finding an excellent agreement
in all cases.

The paper is organized as follows. “Effective volume
fraction and recursive procedure for monomodal suspen-
sions” describes the model and introduces the basic equa-
tions for the calculation of η (φ) (an alternative derivation

of the basic equations using space-crowding ideas origi-
nally due to Mooney (1951) is presented in Appendix A). In
“Mixtures of particles with the same intrinsic viscosity but
different sizes” we extend the formalism to treat mixtures of
particles with the same intrinsic viscosity and “Mixtures of
particles with different intrinsic viscosities” considers mix-
tures of particles with different intrinsic viscosities. Finally,
“Conclusions” is devoted to conclusions.

Effective volume fraction and recursive procedure
for monomodal suspensions

The viscosity of a suspension η can be expanded in a virial
series as

η (φ) = η0

(
1 + [η] φ + kH [η]2 φ2 + ...

)
. (2)

where the Huggins coefficient, kH (x) accounts for two-
body interactions including excluded volume but also
hydrodynamic. These interactions become increasingly
important when increasing the filling fraction. For dilute
suspensions, expression (2) can be approximated by

η (φ) � η0
(
1 + [η] φeff

)
(3)

where we have defined the effective volume fraction φeff as

φeff = φ

1 − cφ
, (4)

with c a fitting constant related to crowding effects. For this
approximation the virial series reads

η (φ) = η0

(
1 + [η] φ + c [η] φ2 + ...

)
. (5)

Thus, if one approximates Eq. 2 using Eq. 3 one possibility
is to choose c so that c = kH [η], assuming kH is known. In
this way, both expressions are identical up to order φ2. This
strategy could be useful for low concentrations only since
no correlations between higher order terms in Eqs. 2 and 5
exists.

In order to obtain an expression for η(φ) useful for larger
concentrations we follow the method proposed in (Mendoza
and Santamarı́a-Holek 2009, 2010; Santamarı́a-Holek and
Mendoza 2010). In this approach, further corrections arising
from hydrodynamic interactions are incorporated by means
of a recursive procedure. This theoretical method is based on
a progressive addition of particles to the sample in which the
new particles interact in an effective way with those added
in previous stages (Bullard et al. 2009). Using Eq. 3 as start-
ing point for the recursive procedure we obtain (Mendoza
and Santamarı́a-Holek 2009, 2010; Santamarı́a-Holek and
Mendoza 2010)

η (φ) = η0
(
1 − φeff

)−[η]
, (6)
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or, using the definition of φeff

η (φ) = η0

(
1 − φ

1 − cφ

)−[η]

. (7)

The viscosity as given by Eq. 6 diverges when φeff = 1,
in other words, c depends on the critical volume fraction φc

which is the concentration at which the suspension loses its
fluidity and is given by

c = 1 − φc

φc

. (8)

Note that φeff � φ at low volume fractions and φeff = 1
at the critical packing φ = φc. A series expansion of Eq. 7
gives

η (φ) = η0

{
1 + [η] φ +

[
c [η] + 1

2
[η] (1 + [η])

]
φ2 + ...

}
.

(9)

Comparing Eqs. 5 and 9, we see that the recursive proce-
dure has introduced additional contributions starting from
the quadratic term. Such contributions are hydrodynamic in
origin as will be explained below.

If we make φeff = φ then we are neglecting
excluded volume interactions. In this case, one recovers the
Brinkman-Roscoe’s result (Brinkman 1952; Roscoe 1952)
η (φ) = η0(1 − φ)−[η], which contains higher-order cor-
rections to the Einstein-like expression, (1). Since excluded
volume interactions have been completely ignored, then
these corrections should be attributed to hydrodynamic
interactions, and are implicitly incorporated through the
differential procedure.

Note that our model, (7), is different from the popu-
lar Krieger-Dougherty expression (Krieger and Dougherty
1959),

ηKD (φ) = η0

(
1 − φ

φmax

)−[η]φmax

, (10)

where φmax is the volume fraction at maximum packing.
This expression underestimates the viscosity of the suspen-
sion at large volume fractions as explained thoroughly in
Santamarı́a-Holek and Mendoza (2010).

An alternative derivation of Eq. 3 (which serves as a
basis for the recursive procedure) based on Mooney’s space-
crowding ideas (Mooney 1951) is given in Appendix A.

Illustrative calculations for monomodal suspensions

The model given by Eqs. 7 and 8, has been tested for
different systems, in particular, for a suspension of iden-
tical hard spheres as shown in Fig. 1. Here, we plot the
viscosity as a function of the concentration φ for a homoge-
neous hard-sphere suspension as obtained from experiments
(red symbols), and as given by our model (Mendoza and

Santamarı́a-Holek 2009) with [η] = 2.5 and φc = φRCP �
0.637 (random close packing). As a second illustrative
example, we use our model to fit the viscosity of a suspen-
sion of aligned prolate ellipsoids (see Fig. 1). The interest
in ellipsoidal particles arises among other reasons because
they have been used as models of globular proteins and their
hydrodynamic properties can be expressed analytically. In
particular, the orientationally averaged intrinsic viscosity
can be calculated for arbitrary aspect ratios p = b/a, where
b is the polar radius and a is the equatorial radius is given
by Landau et al. (1984)

[η] = 2

5

(
p2−1

)2
{

− (
4p2 − 1

)
B + 2p2 + 1

3p2
(
3B+2p2−5

) [(
2p2+1

)
B − 3

]

+ 14

3p2
(
3B+2p2−5

) + 2(
p2+1

) (−3p2B+p2 + 2
)

+ p2 − 1

p2
(
p2 + 1

) [(
2p2 − 1

)
B − 1

]
}

, (11)

where

B = p−1
(
p2 − 1

)−1/2
cosh−1 p, when p > 1,

= 1, when p = 1,

= p−1
(

1 − p2
)−1/2

cos−1 p, when p < 1.

(12)

The value of [η] is then used in Eq. 7 to compute the
viscosity of the suspension.

In the inset of Fig. 1, we show the behavior of the ori-
entationally averaged intrinsic viscosity as a function of the
aspect ratio p. As can be seen, the lower value of the intrin-
sic viscosity occurs for spherical particles and increases
slightly more sharply for prolate ellipsoids than for oblate
ones. In Fig. 1, we plot the viscosity of a pure suspension of
aligned prolate hard ellipsoids with p = 4 and we compare
the result with the data obtained from an empirical equa-
tion for the effective viscosity of concentrated suspensions
of aligned rigid prolate spheroids due to Brodnyan (1959),
given by

η (φ)=η0 exp

[
2.5φ+0.399φ (p−1)1.48

1 − 1.35φ

]
for p≥1.

(13)

Comparison of our model with the empirical Eq. 13 (sym-
bols) represents an indirect comparison of our model with
experimental results because the empirical equation was
obtained by fitting to experimental data. Using both [η] and
φc as fitting parameters we obtain for p = 2, [η] � 3.2, a bit
larger than the value obtained for an isotropic distribution,
Eq. 11, and φc � 0.6. For p = 4, we obtain [η] � 4.78,
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and φc � 0.58. Notice the excellent agreement between our
model and the experimental data for both, hard spheres and
aligned prolate ellipsoids.

Mixtures

Here, we extend the previous results to mixtures, first for
a suspension of particles with identical intrinsic viscosity
but a distribution of sizes and subsequently to mixtures of
particles with different intrinsic viscosities.

Mixtures of particles with the same intrinsic viscosity
but different sizes

Most suspensions are in practice polydisperse, thus the need
to study the effect that the distribution of sizes has on the
effective viscosity of a suspension. In this section, we will
show explicitly how to obtain approximate expressions for
multimodal mixtures and also show that our expression (7)
is still useful to calculate the viscosity of a system with dis-
tribution of sizes if the crowding parameter c is taken as a φ

dependent quantity of the form c = c′ + c′′φ, with c′ and c′′
constants.

Bimodal suspensions

Firstly, we consider the case of a suspension of particles
with two different diameters but with identical intrinsic
viscosities. According to Faroughi and Huber (2014), the
viscosity of bimodal-sized particles with interfering size
ratios can be written as the product of two monomodal
viscosities with corrected volume fractions that take into

account crowding between different species. Their resulting
expression is

η(φ1 + φ2)

η0
= η (�1) η (�2) , (14)

where φ1 = φs = ξφ and φ2 = φl = (1 − ξ) φ, represent
the volume fractions of the first (small) and second (large)
species, respectively. Note that φl + φs = φ is the total vol-
ume fraction of the mixture. The corrected volume fractions

�1 = φs + Cf (ξ, λ)φl

1 − (
1 − Cf (ξ, λ)

) (
φl − Cf (ξ, λ)φl

) (15)

and

�2 = φl − Cf (ξ, λ)φl

1 − Cf (ξ, λ)
(
φs + Cf (ξ, λ)φl

) , (16)

are functions of φs , φl , and size ratio of the large to the small
spheres λ = Dl/Ds (see Faroughi and Huber 2014), and the
stiffening functions η (�i) are given by Eq. 7. The crowding
factor appearing in the previous equations is Faroughi and
Huber (2014)

Cf (ξ, λ) = φRCP

φbm (ξ, λ)

φbm (ξ, λ) − φ′∞
φRCP − φ′∞

, (17)

= φbm (ξ, λ) − φRCP (2 − φRCP )

φbm (ξ, λ) (φRCP − 1)
, (18)

with φRCP � 0.637 the random close packing of a mono-
disperse suspension of hard spheres, φ′∞ = φRCP + (1 −
φRCP )φRCP is the maximum packing of any possible ran-
dom binary mixture of spheres, and φbm (ξ, λ) represents
the maximum packing fraction for a suspension of size ratio
λ and small particle proportion ξ and can be approximated
by Faroughi and Huber (2014)

φbm (ξ, λ) = min

[
φRCP

1 − (1 − 1/λ)2.1 ξ
,

φRCP

φRCP + (
1 − (1 − 1/λ)1.9 (1 − ξ)

)
(1 − φRCP )

]
. (19)

The crowding factor has the limiting values Cf (0, λ) =
Cf (1, λ) = 1. Figure 2 shows the excellent agreement
between the model of Faroughi and Huber (solid lines) with
the experimental data of Poslinski et al. (1988).

Performing the product in the right-hand side of Eq. 14,
we can transform Faroughi and Huber model (Faroughi and
Huber 2014) such that it takes the form of Eq. 6 with

φeff = �1,eff + �2,eff − �1,eff �2,eff , (20)

and

�i,eff = �i

1 − c�i

. (21)

This way of writing the Faroughi and Huber model will
be useful to extend it to multimodal mixtures.

Multimodal suspensions

The original Faroughi and Huber model (Faroughi and
Huber 2014) is limited to binary suspensions and hence the
need for a generalization to treat the case of multimodal dis-
persions. Here, we propose an extension of the Faroughi and
Huber model to treat multimodal mixtures. If we have a sus-
pension of n groups of particles, each group of a different
diameter, we may write, by extension of Eq. 14

η(φ)

η0
= η (�1) η (�2) · · · η (�n) . (22)

If �i were known, then the viscosity of the mixture would
be also known. However, �i might be difficult if not
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Fig. 1 Relative static low-shear viscosity η/η0 as function of the vol-
ume fraction φ for three different cases: A pure suspension of hard
spheres (HS). The green symbols represent experimental data given
by de Kruif et al. (1985) and the green line is the relative viscosity
as obtained by our model with [η] = 2.5 and φc = 0.637. A pure
suspension of aligned prolate ellipsoids with p = 2 and p = 4, as
obtained from the empirical equation of Brodnyan (red and black sym-
bols, respectively) and as given by our model with [η] � 3.2 and
φc � 0.6 (red line), and [η] � 4.7 and φc � 0.58 (black line). Inset:
Orientationally averaged intrinsic viscosity of ellipsoids as a function
of the aspect ratio p = b/a

impossible to find, and thus, a convenient way to circum-
vent this difficulty is to obtain the viscosity by applying
repeatedly the procedure used in the bimodal case.

As an example, consider a trimodal mixture whose com-
ponents have volume fractions φ1 = φs , φ2 = φm, and
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Fig. 2 Relative viscosity η(φ)/η0 as function of the volume fraction
φ for a bimodal suspension. The solid lines are the model of Faroughi
and Huber (2014). The dashed lines show the results of the present
model with c′ and c′′ as given by Eqs. 29 and 30, respectively. Symbols:
experimental measurements given by Poslinski et al. (1988). The open
squares are extracted from Chong et al. (1971)

φ3 = φl , with s,m, and l referring the small, medium,
and large particles, respectively. In a first stage, we take
the two species with smaller size and obtain the viscosity
of the bimodal mixture as given by Faroughi and Huber
model, Eqs. 14 and 15–19. In these expressions, we have
to make the following substitutions, φ → φs + φm, ξ →
φs/(φs +φm), and λ → Dm/Ds . In a second stage, we want
to use this result together with the viscosity of the third com-
ponent as if it were a two-component mixture and use Eq. 14
again to obtain the total viscosity. As explained at the end of
the previous section, the viscosity of the already calculated
binary mixture can be written as Eq. 6 if φeff is given by
Eq. 20. In order to use this result to calculate the viscosity of
the trimodal mixture, we need to write the obtained viscos-
ity of the components 1 and 2 in exactly the same form as in
Eq. 7. With this purpose, we define φ12 through the relation

φeff = φ12

1 − cφ12
, (23)

where φeff is given by Eq. 20 and c by Eq. 8. Now, we
approximate the viscosity of the trimodal mixture as

η(φ1 + φ2 + φ3)

η0
� η (�12) η (�3) , (24)

where �12 and �3 are the corrected volume fractions for
the “second-stage bimodal mixture” with volume fractions
φ12 and φ3, as prescribed by Eqs. 15 and 16. In this second
stage, we make the following substitutions, φ → φ12 + φ3,
φs → φ12, and φl → φ3. Analogously, we replace Cf (ξ, λ)

in Eqs. 15 and 16 by

Cf = φRCP

φtm

φtm − φ′
tm

φRCP − φ′
tm

, (25)

which is the equivalent of Eq. 17 for trimodal mixtures.
Here, φtm is the maximum packing of the trimodal mixture
and φ′

tm is the maximum possible packing of any trimodal
random mixture of spheres with infinite size ratios λi =
Di+1/Di → ∞. A discussion on how to calculate the tri-
modal maximum packing φtm for a given mixture can be
found in Brouwers (2011, 2013). The maximum packing of
any trimodal mixture of spheres is φ′

tm � 0.95, obtained
for ξs = 0.088, ξm = 0.243, and ξl = 0.669, with
ξα = φα/(φ1 + φ2 + φ3), the particle proportions for small,
medium, and large size particles α = s,m, and l) (Sudduth
1993c; Genovese 2012). Notice that one recovers the cor-
rect monomodal expression when the three components
have identical sizes. We will name this approach “iterative
model” to distinguish it from the approximation that will be
introduced in “Padé approximation for the effective volume
fraction”. In Appendix B we collect the necessary equations
to calculate the viscosity of a trimodal mixture as described
in the previous paragraphs.

In Fig. 3, we show the predicted viscosity for a trimodal
mixture of spheres with [η] = 2.5, λi = Di+1/Di → ∞
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and the prescribed proportions ξs = 0.088, ξm = 0.243,
and ξl = 0.669. For this system, φtm = φ′

tm and
thus Cf = 0. In this case, the present model with-
out fitted parameters (solid line) is very close to the
result proposed by Farris (1968) who considers that for
non-interfering size ratios, the viscosity can be calcu-
lated as the product of the viscosity functions of the
individual components, that is, η (φs + φm + φl) =
η (φl) η (φm/ (1 − φl)) η (φs/ (1 − φl − φm)), or more
explicitly,

η (φs + φl) = η0

(
1 − φl

1 − cφl

)−[η]

×
(

1 − φm/ (1 − φl)

1 − cφm/ (1 − φl)

)−[η]

×
(

1 − φs/ (1 − φl − φm)

1 − cφs/ (1 − φl − φm)

)−[η]

. (26)

Summarizing, in this section we have obtained the vis-
cosity of a multimodal dispersion by consecutive applica-
tions of an expression for the viscosity of a bimodal mixture.
Starting from the two smaller components we obtain the
corrected volume fractions of this binary system using,

Faroughi and Huber prescription, Eqs. 15 and 16 (Faroughi
and Huber 2014). Then, we obtain the effective volume frac-
tion φeff , given by Eq. 20, and φ12 as given by Eq. 23 of
this binary mixture. Then, we use this result together with
the viscosity of the next larger component to calculate the
corrected volume fractions and the viscosity of a trimodal
mixture. Successive applications of this procedure allows to
obtain the viscosity of n-modal mixtures.

Padé approximation for the effective volume fraction

In this section, we propose to approximate Faroughi and
Huber model (Faroughi and Huber 2014) in a way that will
be useful in the case in which there is not complete geo-
metrical information of the system. The effective volume
fraction for this model, (20), can be approximated using a
(1,2) Padé approximant1 to obtain

φeff � φ

1 − c(φ)φ
, (27)

where

c(φ) = c′ + c′′φ, (28)

with

1A Padé approximant of order (m, n) to an analytic function f (x) at

x = 0 is defined by the rational function R(x) =
∑m

j=0 aj xj

1+∑n
k=1 bkx

k and

gives the “best” approximation of a function by a rational function of
given order.

c′ = (φRCP − 1)
{
2(1 − ξ)ξ − 1 − 2Cf (ξ, λ)

[
(1 − ξ)2Cf (ξ, λ) + ξ(3 − 2ξ) − 1

]}

φRCP

, (29)

and

c′′ = (1 − ξ)
[
1 − Cf (ξ, λ)

] [
(1 − ξ)Cf (ξ, λ) + ξ

]

φ2
RCP

× {
[2ξ(φRCP − 1) − 3φRCP + 2] Cf (ξ, λ) − 2ξ(φRCP − 1) + φRCP − 1

}

× {
[2ξ(φRCP − 1) − 3φRCP + 2] Cf (ξ, λ) − 2ξ(φRCP − 1) + 2φRCP − 1

}
. (30)

In the case in which ξ = 0 or ξ = 1, the previous expres-
sions lead to c′ = c = (1−φRCP )/φRCP and c′′ = 0. Thus,
Eq. 27 reduces to Eq. 4 and we recover the monomodal
suspension result. Figure 2 shows the excellent agreement
between the Padé-approximated Faroughi and Huber model
(dashed lines) with the original Faroughi and Huber model
(Faroughi and Huber 2014) (solid lines) and with the exper-
imental data of Poslinski et al. (1988). In the rest of the
manuscript, we will refer to the Padé-approximated expres-
sion as “present model” to distinguish it from the iterative
approach described in “Multimodal suspensions”.

Even if the Faroughi and Huber model (Faroughi and
Huber 2014) is preferable over its approximation in the

binary mixture case, the (1,2) Padé approximated expression
given in the present work can be immediately generalized
to multimodal suspensions and to mixtures of particles with
different intrinsic viscosities, and even if a closed form for
c′ and c′′ might be difficult to find in the general mix-
ture case, they can still be used as fitting parameters. At
this point it is important to stress that Faroughi and Huber
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Fig. 3 Relative viscosity η(φ)/η0 vs. particle volume fraction φ of
a trimodal suspension of spheres with infinite size ratios and particle
proportions ξs = 0.088, ξm = 0.243, and ξl = 0.669. The symbols
correspond to Farris prediction. The solid black line is the prediction of
the iterative model obtained from two consecutive applications of the
bimodal model as explained in the main text (see also Appendix B). No
fitted parameters appear in this model. The dashed red line represents
the Padé approximated expression with the fitted parameters c′ = 0.40
and c′′ = −0.27 which according to Eq. 31 corresponds to φc � 0.86

model (Faroughi and Huber 2014) is restricted to the inter-
val 1 ≤ λ ≤ 7 and it overestimates the value of the critical
packing. Indeed, the original Faroughi and Huber model can
be transformed into the form of Eq. 6 if φeff is given by
Eqs. 20 and 21 without requiring additional approximations.
The divergence of the viscosity occurs when φeff = 1. For
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Fig. 4 Relative viscosity η(φ)/η0 as function of the volume fraction
φ for a bidisperse suspension. The solid black line shows the results
of the present model with c′ � 0.81 and c′′ � −0.46 which accord-
ing to Eq. (31) corresponds to φc � 0.67. Symbols: experimental
measurements given by Shapiro and Probstein (1992)

example, for the parameters of Fig. 4, λ = 4 and ξ = 0.5,
the condition φeff = 1 leads to the value φc (ξ, λ) �
0.75 which is above the maximum packing value obtained
form Eq. 19, φbm (ξ, λ) � 0.71. Nonetheless, Faroughi
and Huber model (Faroughi and Huber 2014) allowed us to
obtain expressions for c′ and c′′, (29) and (30). If a model
for the binary system, different from that of Faroughi and
Huber is used as starting point, different expressions would
be obtained for c′ and c′′. Alternatively, if we use them as
fitting parameters, we can assess what would be the best
possible agreement with experimental and simulation data
using the (1, 2) Padé approximation, without relying in an
specific starting binary model.

Summarizing, in this section we have shown that the vis-
cosity of a binary mixture can be approximately calculated
using Eqs. 4 and 6, except that the c in Eq. 4 is replaced by
c(φ) as given by Eq. 28. In the case of spherical particles the
parameters c′ and c′′ are given by Eqs. 29 and 30 but in gen-
eral can be considered as fitting parameters that are related
to the critical packing where the viscosity diverges by the
relation

φc (ξ, λ) = − (
1 + c′) +

√
(1 + c′)2 + 4c′′

2c′′ . (31)

The last equation has been derived by solving φeff =
φc(ξ,λ)

1−c(φc(ξ,λ))φc(ξ,λ)
= 1, and using Eq. 28. If one makes the

requirement that φc (ξ, λ) = φbm (ξ, λ), where φbm (ξ, λ)

is the maximum packing of a bidisperse suspension, then
the number of fitting parameters reduces to only one. An
additional fitting parameter as compared to the monomodal
case is necessary since the maximum packing φbm (ξ, λ)

can not be the only physical parameter in consideration.
This is due to the fact that for a given value of φbm (ξ, λ),
there are two different proportions of small spheres ξ1 and
ξ2, respectively, which share the same maximum packing,
that is, φbm (ξ1, λ) = φbm (ξ2, λ). In principle, there is no
reason to expect exactly the same viscosity curves in both
cases. Thus, the additional fitting parameter has the role of
distinguishing between them.

From a practical point of view, sometimes it is preferable
to use c′ and φc (ξ, λ) as fitting parameters and then use
Eq. 31 to find c′′, especially when the data do not extend
to large volume fractions. This avoids the possibility that
Eq. 31 gives complex values for φc (ξ, λ).

The transition from fluid to solid for mono-disperse and
bidisperse suspensions of hard spheres was considered by
Shapiro and Probstein (1992). Their experimental data are
very well fitted by our model as shown in Fig. 4. The
data correspond to a bimodal dispersion with size ratio of
the large to the small spheres λ = Dl/Ds = 4 and the
proportion of small spheres ξ = 0.5. The two fitting con-
stants were c′ � 0.81 and c′′ � −0.46 which according
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to Eq. 31 corresponds to φc (ξ, λ) � 0.67 (solid black
curve). The obtained critical volume fraction is larger than
the random close packing of a mono-disperse suspension
of hard spheres, φRCP � 0.637. This is to be expected
since a polydisperse system of spheres can be packed more
closely than a mono-disperse suspension. We can examine
how the fitting value for φc (ξ, λ) compares with the maxi-
mum packing of a bidisperse suspension. According to the
approximation given by Eq. 19, for the system of Fig. 4 we
get φbm (ξ, λ) � 0.71, a bit larger than the value obtained
from the fitting (an alternative approximation for the maxi-
mum packing, proposed in Ref. (Qi and Tanner 2011), gives
φbm (ξ, λ) � 0.686, closer to the value obtained from the
fitting).

In Fig. 5 results for the high shear viscosity of bimodal
mixtures (Probstein et al. 1994) where a very fine compo-
nent is mixed with a coarse component, have been equally
well fitted by the present model. For the composition with
ξ = 1, we used the monomodal version of the model with
φc (ξ, λ) � 0.56. For ξ = 0.75, the fitting constants were
c′ � 0.79 and c′′ � −0.38 which according to Eq. (31)
corresponds to φc (ξ, λ) � 0.65. Finally, for ξ = 0.25, the
fitting constants were c′ � 0.32 and c′′ � −0.003 which
corresponds to φc (ξ, λ) � 0.76.

Previous studies on the viscosity of multimodal dis-
persions have found that typical models for the viscosity,
like the Krieger and Dougherty expression, (10), fail to
give good fits to the experimental data unless the intrinsic
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Fig. 5 High shear relative viscosity η(φ)/η0 as function of the volume
fraction φ for three binary mixtures of large and small spheres. Black
solid line: present model with φc � 0.56. Red dashed line: present
model with c′ � 0.79 and c′′ � −0.38 which according to Eq. 31
corresponds to φc � 0.65. Green dotted line: present model with c′ �
0.32 and c′′ � −0.003 which corresponds to φc � 0.76. Symbols:
experimental measurements given by Probstein et al. (1994) for three
different compositions as indicated

viscosity [η] is replaced by an empirical value that is usu-
ally different than its nominal value (Gondret and Petit
1997; He and Ekere 2001; Pishvaei et al. 2006). It is
argued that the intrinsic viscosity depends on the absolute
size of the particles, particularly for colloidal particles, due
to surface chemical forces or electrostatic forces (He and
Ekere 2001). If instead of using the appropriate expres-
sion for the crowding term for binary suspensions, given by
Eq. 28, we use the crowding constant appropriate for the
monomodal case, given by Eq. 8, then a good fit to Shapiro
and Probstein’s data is obtained only if φc (ξ, λ) � 0.67
and [η] � 2.75. This suggests that the use of an intrin-
sic viscosity [η] with a value larger than the nominal to
fit experiments for bimodal or other polydisperse suspen-
sions could be the result of using expressions designed
for monomodal suspensions with a constant crowding fac-
tor, and not necessarily the result of additional physical
effects.

We can also compare the best fit obtained using the
model with c′ and c′′ as fitting parameters with Farris model
for the trimodal mixture of Fig. 3. In this case the fitted con-
stants are c′ = 0.40 and c′′ = −0.27 which according to
Eq. 31 corresponds to φc � 0.86. It can be observed that
the approximation reproduces accurately Farris’ results up
to φ � 0.8.

The rheological properties of aqueous polystyrene latex
dispersions from three synthetic batches with varying
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Fig. 6 High shear relative viscosity η(φ)/η0 as function of the volume
fraction φ for two systems with different polydispersity. A moderately
broad distribution (BD1) of particles with average size 400 nm and a
degree of polydispersity 0.301, and a very broad distribution (BD2)
of particles with the same average size but increased polydispersity
0.484, Black line: present model with c′ � 0.46 and c′′ � −0.18
which according to Eq. 31 corresponds to φc � 0.76. Red line: present
model with c′ � 0.10 and c′′ � 0.24 which corresponds to φc � 0.78.
Symbols: experimental measurements given by Luckham and Ukeje
(1999)
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degrees of polydispersity were experimentally studied by
Luckham and Ukeje (1999). In Fig. 6 we show their data
for the high shear relative viscosity for two distributions: a
moderately broad distribution (BD1) consisting of particles
with size 400 nm and with a polydispersity of 0.301, and a
very broad distribution (BD2) consisting of particles of the
same average size but with a polydispersity of 0.485. The
lines correspond to the best fit of the present model given
by Eqs. 6, 27, and 28 with c′ � 0.46 and c′′ � −0.18
which according to Eq. 31 corresponds to φc � 0.76 for
BD1, and c′ � 0.10 and c′′ � 0.24 which corresponds to
φc � 0.78 for BD2. Note that the critical volume fraction φc

is larger, due to the polydispersity, than the corresponding
high shear value for monomodal suspensions φc = 0.7405.
Also, notice that in the BD2 case, c′′ > 0, which contrasts
with the fit of all the other cases and with the result given by
Eq. 30 for the bimodal case which always evaluates to nega-
tive values. Since the value c′′ � 0.24 originates on a fitting
procedure and not on an underlying derivation, it is not clear
if this discrepancy is a real consequence of the broadness of
the distribution, a possible inaccuracy of the fitted data or a
limitation of the model.

Another application of the model considers a coal
slurry studied in Papachristodoulou and Trass (1984) with
a particle size distribution given by a Rosin-Rammler
distribution (Rosin and Rammler 1933; Vesilind 1980).
Papachristodoulou and Trass (1984) reported the Bing-
ham viscosities, derived by fitting the rheological data to
a Bingham equation and therefore, in principle, accounted
for the yield stress effect typically present in coal slur-
ries. Therefore, the experimental viscosities reported in
Papachristodoulou and Trass (1984) are the relative Bing-
ham plastic viscosities. In Fig. 7, the Bingham viscosity is
compared with the best fit of the present model given by
Eqs. 6, 27, and 28 with an intrinsic viscosity [η] = 2.5. The
fitting parameters were c′ � 0.98 and c′′ � −0.81 which
according to Eq. 31 corresponds to φc � 0.71. Again, the
data are very well fitted by our model.

Mixtures of particles with different intrinsic viscosities

We propose a convenient generalization of the previous
section to treat the case of particles with different intrinsic
viscosities as in the case of mixtures of particles with differ-
ent shapes or with different porosities. For simplicity let us
consider a binary system and assume that the viscosity can
again be written as the product of two monomodal viscosi-
ties with corrected volume fractions that take into account
crowding between different species

η(φ1 + φ2)

η0
= η (�1) η (�2) . (32)
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Fig. 7 Relative viscosity η(φ)/η0 as a function of the volume frac-
tion φ of coal particles in a coal slurry. Comparison of the fitting
of our model (solid line) to experimental data for coal slurry with
a Rosin-Rammler distribution (Papachristodoulou and Trass 1984).
Solid line: present model with c′ � 0.98 and c′′ � −0.81, which
according to Eq. 31 corresponds to φc � 0.71. Symbols: experimental
measurements given by (Papachristodoulou and Trass 1984)

This can be expressed as

η(φ1 + φ2)

η0
= (

1 − �1,eff

)−[η]1
(
1 − �2,eff

)−[η]2

=
[(

1−�1,eff

)[η]1/[η]eff
(
1−�2,eff

)[η]2/[η]eff

]−[η]eff

�
(

1− [η]1

[η]eff

�1,eff − [η]2

[η]eff

�2,eff +· · ·
)−[η]eff

, (33)

where

[η]eff = [η]1ξ1 + [η]2ξ2, (34)

is the effective or averaged intrinsic viscosity of the mixture.
Here, [η]i and ξi = φi/(φ1 + φ2) are the intrinsic viscosity
and proportion of component i, respectively, with

∑
ξi = 1,

and

�i,eff = �i

1 − ci�i

, (35)

with ci representing the self crowding of species i.
Now we define

φeff = [η]1

[η]eff

�1,eff + [η]2

[η]eff

�2,eff + · · · , (36)

so that the viscosity can be written as

η (φ) = η0
(
1 − φeff

)−[η]eff . (37)

Thus, one has the same functional form as for the mono-
disperse system except that [η] is replaced by [η]eff , given
by Eq. 34. Although the corrected volume fractions, �i , are
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not known in this case, it is reasonable to assume that φeff

can be approximated again by a (1, 2) Padé approximant to
recover Eq. 27. Note that in this approximation, the defini-
tions (36) and (20) coincide if the intrinsic viscosities are the
same. Expressions for c′ and c′′ will depend not only on the
geometrical characteristics of the system under considera-
tion like size ratio, composition, aspect ratio of the particles,
but also on [η]i . Presumably, a procedure similar to the one
proposed in Faroughi and Huber (2014) for spheres, would
allow to find such expressions for other mixtures.

Although in this case we have not found experimental
results to compare with and thus it is not possible to obtain
the values for c′ and c′′ from a fit, we can exemplify the
application of the model with an idealized system. Consider
the case of a mixture of spheres with randomly aligned ellip-
soids of aspect ratio p = 4 for which [η] � 4.7. We have
chosen ellipsoids with this particular aspect ratio because
their maximum random packing closely corresponds to that
of the spheres (Donev et al. 2004; Wouterse et al. 2007),
i. e., φRCP � 0.637, thus, ci � c = (1 − φRCP )/φRCP .
We define the size ratio of the large to the small species as
λ ≡ (Vl/Vs)

1/3, with Vα the volume of species α. Note that
we recover λ = Dl/Ds in the case of mixtures of spheres.
In the left panel of Fig. 8 we plot the viscosity for spheres
and ellipsoids with the same volume (λ = 1), as predicted
by Eq. 37. For λ = 1, the crowding effects of a binary mix-
ture of spheres reduces to that of the monomodal case. We
assume that the same occurs for the mixture of ellipsoids and
spheres, thus c′ = c = (1 − φRCP )/φRCP and c′′ = 0, but

with the averaged intrinsic viscosity given by Eq. 34. Five
cases with ellipsoidal particle proportions ξ = 0, 0.25, 0.5,

0.75, and 1 are shown. As expected, the curve for the visco-
sity gradually transforms from the pure spherical particle ca-
se to the pure ellipsoidal particle one. In the right panel of
Fig. 8 we consider the opposite situation, that is, a mixture
of non interfering size ratio λ → ∞, which corresponds
to a mixture of small ellipsoids with large spheres or to a
mixture of small spheres with large ellipsoids. Following
Farris (1968), in this case, the viscosity can be approximated
by the product of the viscosity functions of the individual
components, that is, η (φs + φl) = η (φl) η (φs/ (1 − φl)),
with φs and φl the volume fractions of the small and large
components, respectively. The symbols correspond to the
results obtained in this way and the solid lines correspond
to the fitting of Eqs. 37, 34, and 27 to the data obtained with
the Farris procedure. The fitting constants are c′ = 0.48
and c′′ = −0.25 for the case of small ellipsoids and large
spheres, and c′ = 0.02 and c′′ = 0.34 for the case of small
spheres and large ellipsoids. The good agreement shows that
the (1, 2) Padé approximation works remarkably well as a
fitting tool also in this case. Note that an equimolar mixture
of small ellipsoids with large spheres have larger viscosity
than a mixture of small spheres and large ellipsoids. This
conclusion could not be obtained with a monomodal model
since it cannot distinguish between the two situations. The
green curve shows the prediction of a monomodal model
with the same maximum packing φbm(ξ = 0.5, λ → ∞) �
0.78 and average intrinsic viscosity.
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Fig. 8 Relative viscosity η(φ)/η0 vs. particle volume fraction φ for a
mixture of spheres and randomly oriented ellipsoids with aspect ratio
p = 4, as predicted by Eq. 37. Left panel: Spherical particles and ellip-
soids of the same volume (λ = 1) and ellipsoidal particle proportions
ξ = 1, 0.75, 0.5, 0.25, and 0. Right panel: Ellipsoidal particle pro-
portion ξ = 0.5 and λ → ∞. The black curve corresponds to small
ellipsoids mixed with large spheres as given by Eq. 37 with fitting

constants c′ = 0.48 and c′′ = −0.25. The red curve corresponds
to small spheres mixed with large ellipsoids as given by Eq. 37 with
fitting constants c′ = 0.02 and c′′ = 0.34. A monomodal model
with the same φbm(ξ = 0.5, λ → ∞) � 0.78 can not distinguish
between the two situations (green curve). The symbols represent the
results obtained from the product of the viscosity functions for each
component as specified by Farris (1968)
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Fig. 9 Master curve for the viscosity. η represents the static low shear
viscosity or high shear viscosity depending on the case, as discussed
in the text. Symbols are all the data considered in this work

Finally, we would like to stress that a very appealing fea-
ture of Eqs. 4 and 37 is that they allow to plot η in a universal
curve independent of c′, c′′, and [η]eff if we express it as
function of φeff instead of φ. This is done in Fig. 9 where
φeff is calculated using Eq. 4 with the parameters that best
fitted the corresponding data for all the systems considered
in this work. In all cases, the data collapses very nicely into
the master curve.

Conclusions

In this paper we have described a methodology to obtain
the viscosity of multicomponent suspensions as a function
of particle concentration. The procedure consists in succes-
sive applications of expressions for the viscosity of binary
mixtures, originally written as the product of monomodal
stiffening functions. This iterative procedure was explicitly
shown in the case of trimodal mixtures. Its application to
arbitrary mixtures requires the detailed knowledge of size
ratios and compositions. When this information is unknown
the model can still be used as a fitting tool. With that pur-
pose, the final expression for the viscosity is written in terms
of an effective volume fraction that can be further approxi-
mated by the use of a (1,2) Padé approximant. This approach
allows to incorporate the crowding effects due to differ-
ent species in a volume fraction dependent crowding factor
that can be used as fitting parameter to match experimen-
tal or simulation data. This approximation is summarized in
Eqs. 27, 28, 34, and 37 and shows that the same functional
form used for a system with a single species is still a use-
ful approximation for the case of mixtures, provided that the

crowding parameter is a volume fraction dependent quantity
approximated by Eq. 28. The viscosity of mixtures of par-
ticles with different shapes, sizes, porosities, or any other
factor that may produce a distribution of intrinsic viscosi-
ties can also be considered with this procedure. Note that
even if the use of a (1,2) Padé approximation produces accu-
rate results in a large range of volume fractions, a higher
order approximation would be required to decrease possible
discrepancies at the highest concentrations.

Although we have shown the predictive nature of the
model in the case of bimodal and trimodal mixtures, a more
convenient way of calculating c′ and c′′ for the general
multicomponent case is still missing.
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Appendix A: Obtention of Eq. 3 based
on Mooney’s procedure

Here we give an alternative derivation of our starting equa-
tion (3) which is also different from our original derivation
in Mendoza and Santamarı́a-Holek (2009) and is based in
a procedure first introduced by Mooney for the case of
hard spheres (Mooney 1951). His analysis considers space-
crowding effects of the suspended particles on each other
and there is no restriction imposed on the concentration. The
argument makes use of a functional equation which must
be satisfied if the final viscosity is to be independent of the
sequence of stepwise additions of partial volume fractions
of the particles to the suspension. We repeat his argument
here for the reader’s convenience. In extending Einstein’s
expression to higher concentrations Mooney describes the
first-order interactions as essentially a crowding effect as
follows (Mooney 1951): If identical spheres of radius r1

are added to a suspension in two stepwise additions with
volume fractions φ1 and φ2, the addition of the first frac-
tion will increase the viscosity by a factor H(φ1) = η1/η0.
If the second fraction, φ2, is added, there will be a fur-
ther increase in viscosity. This increase can be attributed in
part as being due to the increase in viscosity, due to φ2,
of the remaining liquid in the space not occupied by φ1.
This increase will be of the form H(ϕ21), where ϕ21 =

φ2
1−cφ1

is the concentration of φ2 in the remaining liquid
and c accounts for the crowding that spheres added in the
first step produce in the spheres added in the second step.
But the crowding of fractions φ1 and φ2 being mutual,
introducing φ2 reduces the free volume accessible to φ1,
and the effective concentration of φ1 in the liquid is then
ϕ12 = φ1

1−cφ2
. To take account of this effect we must now

replace H(φ1) by H(ϕ12). The product H(ϕ12) × H(ϕ21)

is the viscosity of a suspension of total concentration,
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φ1+φ2, and hence this product must be equal to H(φ1+φ2).
This is

H(φ1 + φ2) = η12/η0 = H(ϕ12) × H(ϕ21) (38)

= H(
φ1

1 − cφ2
) × H(

φ2

1 − cφ1
). (39)

It is found that this functional equation is satisfied if H has
the form (Mooney 1951)

H(φ) = η

η0
= exp

( [η]φ
1 − cφ

)
, (40)

where [η] is chosen to agree with Einsteins’s equation for
very dilute suspensions ([η] = 2.5 for spheres). Thus,
expanding Eq. 40 we can write

η

η0
= 1 + [η]φ

1 − cφ
+ 1

2

( [η]φ
1 − cφ

)2

+ ..., (41)

� 1 + [η]φ
1 − cφ

, (42)

where we have just kept the first two terms, which is valid
for dilute systems. Note that this last equation can be written
as

η (φ) � η0
(
1 + [η] φeff

)
, (43)

where φeff is given by Eq. 4. Thus, Eq. 43 is formally iden-
tical to Eq. 3, that is used as starting point of the recursive
procedure.

Appendix B: Summary of the relations to calculate
the viscosity of trimodal suspensions

Here we collect all the relations necessary to calculate the
viscosity of trimodal suspensions using the iterative pro-
cedure described in “Multimodal suspensions.” In a first
stage, we calculate the corrected volume fractions for the
two smaller components of the mixture using Faroughi and
Huber prescription (Faroughi and Huber 2014)

�s = φs + Cf (ξ, λ)φm

1 − (
1 − Cf (ξ, λ)

) (
φm − Cf (ξ, λ)φm

) (44)

and

�m = φm − Cf (ξ, λ)φm

1 − Cf (ξ, λ)
(
φs + Cf (ξ, λ)φm

) , (45)

where ξ = φs/ (φs + φm) and the size ratio of the medium
to the small spheres is λ = Dm/Ds . The crowding factor
appearing in the previous equations is Faroughi and Huber
(2014)

Cf (ξ, λ) = φbm (ξ, λ) − φRCP (2 − φRCP )

φbm (ξ, λ) (φRCP − 1)
, (46)

with φRCP � 0.637 the random close packing of a mono-
disperse suspension of hard spheres and φbm (ξ, λ) is given
by Eq. 19.

We write the effective volume fraction of the bimodal
mixture

φeff = �s,eff + �m,eff − �s,eff �m,eff , (47)

where

�i,eff = �i

1 − c�i

, (48)

with i = s,m, and c is given by Eq. 8. We write

φ12 = φeff

1 + cφeff

, (49)

and approximate the viscosity of the trimodal mixture as

η(φs + φm + φl)

η0
� η (�12) η (�l) , (50)

where the stiffening functions η (�i) are given by Eq. 7.
Here,

�12 = φ12 + Cf φl

1 − (
1 − Cf

) (
φl − Cf φl

) (51)

and

�l = φl − Cf φl

1 − Cf

(
φ12 + Cf φl

) , (52)

where

Cf = φRCP

φtm

φtm − φ′
tm

φRCP − φ′
tm

, (53)

with φtm the maximum packing of the trimodal mixture and
φ′

tm � 0.95 the maximum possible packing of any trimodal
random mixture of spheres with infinite size ratios λi =
Di+1/Di → ∞.
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