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• The conductivity tensor is obtained from the Kubo formula.
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a b s t r a c t

In the presence of an external magnetic field, the optical response
of two-dimensional materials, whose charge carriers behave as
massless Dirac fermions with arbitrary anisotropic Fermi velocity,
is investigated. Using Kubo formalism, we obtain the magneto-
optical conductivity tensor for these materials, which allows to ad-
dress the magneto-optical response of anisotropic Dirac fermions
from the well known magneto-optical conductivity of isotropic
Dirac fermions. As an application, we analyse the combined effects
of strain-induced anisotropy and magnetic field on the transmit-
tance, as well as on the Faraday rotation, of linearly polarized light
after passing strained graphene. The reported analytical expres-
sions can be a useful tool to predict the absorption and the Faraday
angle of strained graphene under magnetic field. Finally, our study
is extended to anisotropic two-dimensional materials with Dirac
fermions of arbitrary pseudospin.
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1. Introduction

A Dirac–Weyl material, such as graphene [1,2], organic conductors [3,4] and topological insula-
tors [5,6], possesses low-energy fermionic excitations that behave as massless Dirac particles, rather
than conventional fermions governed by the Schrödinger’s equation [7]. The behaviour of these Dirac
fermions in graphene has been studied by applying an external magnetic field, where a half-integer
quantum Hall effect was observed [1,2]. This observation demonstrates the existence of relativistic
Landau levels with a square root dependence on both the magnetic field B and Landau level index n
(as ∼

√
B|n|), which is in stark contrast to the equally spaced Landau levels for a conventional two-

dimensional electron gas. This unconventional Landau spectrum has also been proved by means of
infrared spectroscopymeasurements, whose transmittance through graphene undermagnetic field is
in excellent agreement with the theoretical magneto-optical response of Dirac fermions derived from
the Kubo formula [8,9]. Moreover, graphene exhibits quantum Faraday and Kerr rotations associated
with the half-integer quantum Hall effect [10,11].

Even in absence of magnetic field the optical properties of graphene are per se unusual. For
example, graphene presents an universal transmittance T determined by the fine-structure constant
α (being T ≈ 1 − πα ≈ 97.7%), over a broad range of frequencies [12]. This remarkable feature
is a consequence of its charge carriers behaved as massless Dirac fermions. At the same time,
graphene exhibits a large interval of elastic response and then, mechanical deformations have been
proposed as a tool to tune its optical properties [13–16]. By applying a uniaxial strain, the optical
conductivity of graphene becomes anisotropic [17,18] and its transmittance depends on the incident
light polarization [14,19].

Up to now, the combined effects of both magnetic field and strain on the optical properties of a
two-dimensional Dirac–Weyl material (2D DWM) have not been analysed in detail. In fact, the optical
conductivity of unstrained graphene under magnetic field is given by an antisymmetric tensor [20],
whereas the optical response of strained graphene, in absence of magnetic field, is a symmetric
tensor [21]. In consequence: What is the symmetry of the optical conductivity tensor if both effects are
present? How many independent components does this tensor have?

The main objective of this article is to provide a general formulation of the magneto-optical
conductivity for anisotropic (strained) 2D DWMs. For this purpose, in Section 2 we start by deriving
the Landau level spectrum for the mentioned 2D DWMs. Unlike previous approaches [22,23], our
derivations are carried out in an arbitrary laboratory reference system. In Section 3, we give an
analytical expression for themagneto-optical conductivity tensor of an anisotropic 2DDWM,whilewe
answer the above questions in Section 4. As an example, we apply our analytical results to a strained
graphene and we report a generalized Faraday rotation. Section 6 is devoted to discuss the extension
of this analysis to Dirac fermions with arbitrary pseudospin and, finally, some conclusions are given
in Section 7.

2. Landau levels

We consider the dynamics of low-energy carriers in an anisotropic 2D DWM governed by the
generic Dirac–Weyl Hamiltonian [24–28]

H = τ · v · p =

∑
i,j

τivijpj, (1)

where τ = (τx, τy) are the first two Pauli matrices that act on the pseudospin degree of freedom, p is
the momentum measured from the Dirac point and v is the (2 × 2) symmetric Fermi velocity tensor.
The corresponding energy dispersion relation is

E(p) = ±

√∑
i

(∑
j

vijpj
)2
, (2)

which represents elliptic Dirac cones. Unlike an isotropic 2DDWM,whose Hamiltonian isH0
= v0τ ·p

with energy dispersion E0(p) = ±v0|p|, the constant energy contours of Eq. (2) are not circles but
ellipses, as illustrated in Fig. 1.
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Fig. 1. The left and right panels illustrate the energy dispersion relations E(p) of an isotropic and an anisotropic 2D DWMs,
respectively. The isoenergetic curves for the isotropic material are circles (violet contours) while for the anisotropic one are
ellipses (red contours). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Since the Fermi velocity tensor is symmetric, such that vij = vji, one can choose a particular
coordinate system x′y′ (the principal one) where v is diagonal and then, the Hamiltonian (1) reduces
to H = τx′vx′x′px′ + τy′vy′y′py′ , where τx′ = τx and τy′ = τy remain being the Pauli matrices. However,
the anisotropic Dirac–Weyl Hamiltonian written in the form (1) allows us to obtain the general
expression of the magneto-optical conductivity tensor an arbitrary laboratory reference system,
which will lead to a more complete mathematical description of both anisotropy and magnetic field
effects on the optical response. For example, the general expression of optical conductivity tensor for
uniaxially strained graphene provides the possibility to determine the strain state by means of only
two transmittancemeasurements using linearly polarized lightwith different polarization angles [19].

Now, in the presence of a uniform magnetic field B = Bez perpendicular to the 2D DWM sample,
Hamiltonian (1) becomes according to the Peierls’ substitution,

H = τ · v · Π =

∑
i,j

τivijΠj, (3)

where Π = p + eA is the gauge-invariant kinetic momentum, being −e < 0 the electron charge and
A the vector potential associated to the magnetic field through B = ∇ × A. The components of Π
satisfy the commutation relation [Πx,Πy] = −ieh̄B [29]. In general, we can introduce the following
ladder operators,

a =
vxxΠx + vxyΠy − i(vyyΠy + vxyΠx)

√
2eh̄B det(v)

(4)

and

a†
=
vxxΠx + vxyΠy + i(vyyΠy + vxyΠx)

√
2eh̄B det(v)

, (5)

such that [a, a†
] = 1, in analogy to those defined in Refs. [22,23]. In terms of these ladder operators,

the Hamiltonian (3) can be rewritten as

H =

√
2eh̄B det(v)

(
0 a
a† 0

)
, (6)

whose eigenvalues obtained from H|ψn⟩ = En|ψn⟩ are

En = sgn(n)
√
2eh̄B det(v)|n| with n ∈ Z. (7)
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The corresponding eigenspinors are given by

|ψn⟩ =
1

√
2

(
| |n| − 1 ⟩

sgn(n)| |n| ⟩

)
for n ̸= 0, (8)

while the zero-energy eigenspinor is

|ψ0⟩ =

(
0
|0⟩

)
, (9)

where | |n| ⟩ are the eigenstates of the usual number operator a†a [29].
Let us draw attention to two important remarks about the Landau level spectrum (7). First, the

energies En are independent of any choice of the coordinate system, as physically expected, because
En are expressed as a function of det(v), which together with tr(v) are the two principal invariants of
the (2× 2) tensor v under rotations. Note that using the identity det(v) = vx′x′vy′y′ , Eq. (7) reproduces
the Landau levels reported for anisotropic 2D DWM in previous works [22,23]. Second, an isotropic
2D DWM with Hamiltonian H0

= v0τ · p, hereafter used as reference material, has exactly the same
Landau level spectrum (7) if, instead of being under a magnetic field B, it is in an effective magnetic
field of magnitude

B = B det(v)/v20 . (10)

This fact will be useful for calculating the magneto-optical conductivity of anisotropic 2D DWMs.

3. Magneto-optical conductivity

The optical conductivity tensor σ(ω, B) of a 2D electron system in a magnetic field can be studied
using the Kubo formalism [30]. In the Landau-level representation, the Kubo formula reads [31–33]

σij(ω, B) =
ig

2π l2B

∑
nm

fn − fm
En − Em

⟨ψn|ji|ψm⟩⟨ψm|jj|ψn⟩

h̄ω + En − Em + iη
, (11)

where g is a degeneracy factor (e.g., g = 4 for graphene due to the twofold spin and twofold valley
degeneracies), lB =

√
h̄/(eB) is themagnetic length, h̄ω is the photon energy, fn = {exp[(En−µ)/kBT ]+

1}−1 is the Fermi–Dirac distribution at temperature T and chemical potential µ, η is a small residual
scattering rate of charge carriers and j = (ie/h̄)[H, r] is the current operator. From Eq. (3), the α-
component of j results

jα = (ie/h̄)
∑
i,j

τivij[Πj, rα] = e
∑

i

vαiτi, (12)

for which [Aj, rα] = 0, [pj, rα] = −ih̄δjα and viα = vαi were taken into account. Thus, we express the
current operator j as

j = ev · τ = (v · ev0τ)/v0 = (v · j0)/v0, (13)

where j0 = ie[H0, r] = ev0τ is the current operator of the isotropic 2D DWM taken as reference.
Now, in Eq. (11) the product of current matrix elements ⟨ψn|ji|ψm⟩, and ⟨ψm|jj|ψn⟩, which capture the
selection rules for Landau-level transitions, can be rewritten using Eq. (13) as

⟨ψn|ji|ψm⟩⟨ψm|jj|ψn⟩ =
1
v20

∑
kl

⟨ψn|vikj0k |ψm⟩⟨ψm|vjlj0l |ψn⟩. (14)

Substituting Eq. (14) into Eq. (11), we obtain

σij(ω, B) =
ig

2π l2B

1
v20

∑
nm

∑
kl

fn − fm
En − Em

⟨ψn|vikj0k |ψm⟩⟨ψm|vjlj0l |ψn⟩

h̄ω + En − Em + iη
,

=
l2B
l2Bv

2
0

∑
kl

vik

(
ig

2π l2B

∑
nm

fn − fm
En − Em

⟨ψn|j0k |ψm⟩⟨ψm|j0l |ψn⟩

h̄ω + En − Em + iη

)
vlj, (15)
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where we conveniently introduce the effective magnetic length lB =
√
h̄/(eB). Notice that the term

enclosed betweenparentheses is just themagneto-optical conductivity tensorσ0(ω,B) of an isotropic
2D DWM under the effective magnetic field Bez . Hence, the magneto-optical conductivity tensor of
an anisotropic 2D DWM described by Eq. (3) is given by the tensorial equation

σij(ω, B) =
1

det(v)

∑
kl

vikσ
0
kl(ω,B)vlj, (16)

which reads σ(ω, B) = v · σ0(ω,B) · v/det(v) in a compact notation. The last equation constitutes
themain contribution of this paper and allows an efficient determination of σ(ω, B) for an anisotropic
2D DWM by means of σ0(ω,B) corresponding to an isotropic one but in a different magnetic fieldB
given by Eq. (10).

4. Discussion

For any reference systems σ0(ω,B) is an antisymmetric tensor of the form [31–33](
σ 0
xx(ω,B) σ 0

xy(ω,B)

−σ 0
xy(ω,B) σ 0

xx(ω,B)

)
, (17)

which has only two independent components σ 0
xx(ω,B) and σ 0

xy(ω,B), instead of at least three ones
for an anisotropic 2D DWM to be calculated using the Kubo formula (11). These two components
respectively denote the longitudinal and Hall conductivities of an isotropic material. Then, from
Eq. (16) the four components of σ(ω, B) can be explicitly written as

σxx(ω, B) =

(
tr(v)
det(v)

vxx − 1
)
σ 0
xx(ω,B), (18)

σyy(ω, B) =

(
tr(v)
det(v)

vyy − 1
)
σ 0
xx(ω,B), (19)

σxy(ω, B) = σ 0
xy(ω,B) +

tr(v)
det(v)

vxyσ
0
xx(ω,B), (20)

σyx(ω, B) = −σ 0
xy(ω,B) +

tr(v)
det(v)

vxyσ
0
xx(ω,B). (21)

In other words, the magneto-optical conductivity tensor of an anisotropic 2D DWM, generally
characterized by four components, is fully determined by calculating only σ 0

xx(ω,B) and σ 0
xy(ω,B)

of an arbitrary isotropic 2D DWM immersed in an effective magnetic fieldB given by Eq. (10).
From Eqs. (20) and (21), it is clear that in an arbitrary laboratory reference system σ(ω, B) is a

tensor without defined symmetry, i.e., it is neither symmetric nor antisymmetric. However, in the
principal coordinate system x′y′, where v is diagonal with vx′y′ = 0, σ(ω, B) results antisymmetric,
whose components are given by the simplified expressions

σx′x′ (ω, B) =
vx′x′

vy′y′
σ 0
xx(ω,B), (22)

σy′y′ (ω, B) =
vy′y′

vx′x′
σ 0
xx(ω,B), (23)

σx′y′ (ω, B) = −σy′x′ (ω, B) = σ 0
xy(ω,B), (24)

after evaluating Eqs. (18)–(21) for the reference system x′y′.
For the limiting case B = 0, one has σ 0

xy(ω, 0) = 0. Thus, the conductivity tensor σ0(ω, 0) takes the
simple form σ0(ω, 0) = σ 0(ω)I, where I is the (2 × 2) identity matrix and σ 0(ω) ≡ σ 0

xx(ω, 0) is the
optical conductivity of an isotropic 2D DWM in the absence of magnetic field. Consequently, for B = 0
the tensorial expressions (18)–(21) become

σ(ω) = σ 0(ω)
(

tr(v)
det(v)

v − I
)
, (25)
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which captures the optical conductivity tensor of an anisotropic 2D DWM described by (1) in the
absence of magnetic field.

5. Application to strained graphene

As an example to illustrate the obtained results, let us consider an uniformly strained graphene.
Up to first order in the strain tensor ϵ, the dynamics of its low-energy carriers can be described by
Dirac–Weyl Hamiltonian (1) with a Fermi velocity tensor given by [24,25,34]

v = vF (I − βϵ), (26)

whereβ ∼ 2 and vF is the Fermi velocity for unstrained graphene, being the chosen isotropic reference
material. Substituting Eq. (26) into Eqs. (18)–(21), replacing v0 by vF and linearizing with respect to ϵ,
the magneto-optical conductivity of strained graphene under a magnetic field Bez is given by

σxx(ω, B) =
[
1 − β(ϵxx − ϵyy)

]
σ 0
xx(ω,B), (27)

σyy(ω, B) =
[
1 − β(ϵyy − ϵxx)

]
σ 0
xx(ω,B), (28)

σxy(ω, B) = σ 0
xy(ω,B) − 2βϵxyσ 0

xx(ω,B), (29)

σyx(ω, B) = −σ 0
xy(ω,B) − 2βϵxyσ 0

xx(ω,B), (30)

where B = B
[
1 − βtr(ϵ)

]
is derived from Eq. (10) and σ0(ω,B) denotes the magneto-optical

conductivity of unstrained graphene, which has been theoretically [35,36] and experimentally [8,9]
addressed.

In order to illustrate the effects of both anisotropy and magnetic field on the optical properties, let
us analyse the transmittance of linearly polarized light for normal incidence on strained graphene, as
shown in Fig. 2. Considering strained graphene as a two-dimensional sheet with conductivity σ(ω, B)
given by Eqs. (27)–(30) and from the boundary conditions for the electromagnetic field along the
interface vacuum–graphene–vacuum, one can demonstrate that the electric fields of incident and
transmitted waves, Ei and Et , are related by [19,37]

Ei =

(
I +

1
2
Z0σ(ω, B)

)
· Et , (31)

where Z0 is the impedance of vacuum. Notice that for Im[σ(ω, B)] ̸= 0 the transmitted light beam
acquires a certain ellipticity.

In the limit of weak absorption, from Eq. (31) it is straightforward to write the transmittance T
as [19]

T (ω, B, θi) ≈ 1 − Z0Re[σ 0
xx(ω,B)]

(
1 + β(ϵyy − ϵxx) cos 2θi − 2βϵxy sin 2θi

)
, (32)

where θi denotes the incident polarization angle, as illustrated in Fig. 2. This expression reveals a
periodicmodulation of the transmittance as a function of θi due to the anisotropy of strained graphene
(see Fig. 3). Such modulation has been observed by Ni et al. [14], but in absence of magnetic field.
Now an external magnetic field, through the longitudinal conductivity σ 0

xx(ω,B), canmodify both the
mean value of the transmittance ⟨T ⟩ = 1 − Z0Re[σ 0

xx(ω,B)] and the amplitude of the modulation
△T = 2βZ0Re[σ 0

xx(ω,B)][tr(ϵ)2 − 4 det(ϵ)]1/2.
Unlike the transmittance, the polarization rotation of a linearly polarized light beam after passing

strained graphene depends on both the longitudinal conductivity σ 0
xx(ω,B) and the Hall conductivity

σ 0
xy(ω,B). From Eq. (31) and in the limit of weak absorption, the polarization rotation angle θ = θt −θi

results

θ (ω, B, θi) ≈
1
2
Z0Re[σ 0

xy(ω,B)] + βZ0Re[σ 0
xx(ω,B)]

(
ϵxy cos 2θi +

ϵyy − ϵxx

2
sin 2θi

)
, (33)

where θt is the transmitted polarization angle (see Fig. 2).
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Fig. 2. Schematic representation of a generalized Faraday polarization rotation experiment: a linearly polarized light beam
becomes elliptically polarized after passing strained graphene.

Fig. 3. Transmittance (top panel) and polarization rotation (bottom panel) as a function of the incident polarization angle θi for
a uniaxial strain along the x-axis (y-axis) of the laboratory reference system, illustrated by solid (dashed) curves. Both strains
have the same magnitude.

In Eq. (33) one can separately identify the effects of either magnetic field or strain-induced
anisotropy. The first term in its right side, Z0Re[σ 0

xy(ω,B)]/2, is owing to the Faraday effect. In fact,
this term has the same form of the Faraday rotation angle for unstrained graphene [38,39]. On the
other hand, the second term in the right side of Eq. (33), which is dependent on θi, is essentially due
to the strain-induced anisotropy. Even in absence of the magnetic field, this second term survives
and describes the dichroism of strained graphene reported in Ref. [19]. The main difference between
these two terms of Eq. (33) is the dependence on the incident polarization direction. While the first
term related to the Faraday effect does not dependent on the incident polarization angle θi, the
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Fig. 4. Energy dispersion relations for anisotropic 2D Dirac–Weyl materials with pseudospin-s equal to 1, 3/2, and 2. The
yellow planes represent zero-energy flat bands. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

strain-induced term is θi-dependent. For instance, if the incident polarization direction is collinear
to one of the principal directions of the strain tensor, the second term is equal to zero.

In summary, the polarization rotation angle given by Eq. (33) can be recognized as the generalized
expression of the Faraday rotation angle for graphene under uniform strain. Its remarkable feature
respect to the version for unstrained graphene is the periodic variation as a function of the incident
polarization direction. The mean value of the generalized Faraday rotation angle is given by ⟨θ⟩ ≈

Z0Re[σ 0
xy(ω,B)]/2, whereas the amplitude of its modulation is △θ = βZ0Re[σ 0

xx(ω,B)][tr(ϵ)2 −

4 det(ϵ)]1/2, which are represented in Fig. 3.

6. Generalization for arbitrary pseudospin

Up to this point, we have studied the magneto-optical conductivity of anisotropic 2D DWMs for
the case of pseudospin s = 1/2, as occurred in graphene and topological insulator. Reviewing in detail
the derivation of Eq. (16), two requirements have been used: (i) The current operators of isotropic and
anisotropic 2D DWMs are related by Eq. (13). (ii) The anisotropic 2D DWM in an external magnetic
field B has exactly the same Landau level spectrum of the isotropic one under an effective magnetic
field B given by Eq. (10). These two requirements are also hold in the general case of an anisotropic
2D DWM described by a Hamiltonian of the form

H = s · v · p, (34)

where s = (sx, sy) are the first two spin-smatrices, being s integer or half-integer. The corresponding
energy dispersion relation consists 2s + 1 bands, in the form of nested deformed Dirac cones and
zero-energy flat band if s is an integer, as illustrated in Fig. 4.

Thus, proceeding analogously as we have made for the case s = 1/2, one can demonstrate that
Eq. (16) is also valid for anisotropic 2D DWMs with carriers of arbitrary pseudospin-s.

At zero magnetic field, the optical properties of isotropic 2D DWMs with arbitrary pseudospin-s
have been previously calculated [40]. Now, using Eq. (26) the findings obtained by Dóra et al. [40]
can be extended for the case of anisotropic DWM. More recently, the magneto-optical conductivity
of isotropic systems, that obey the general pseudospin-s 2D Dirac–Weyl Hamiltonian, has been
evaluated in Ref. [41], where the authors particularly focused on s = {1/2, 1, 3/2, 2} and showed that
the magneto-optical behaviours are markedly different for each case considered. Then, our Eq. (16)
permits a generalization of the results reported by Malcolm et al. [41] to address the magneto-optical
response of anisotropic 2D DWMwith arbitrary pseudospin-s.
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7. Conclusions

Starting from Kubo formalism, we derived an analytical expression for the magneto-optical
conductivity tensor of a generic anisotropic (strained) 2D DWM. For an isotropic 2D DWM under
an external magnetic field, such tensor is symmetric, in contrast to an antisymmetric one for an
anisotropic 2D DWM in absence of magnetic field. However, when both the magnetic field and
anisotropy are present, as considered in this work, the optical conductivity of a 2D DWM is given
by a neither symmetric nor antisymmetric tensor, which is unusual in solid state physics.

Tensorial equation (16) essentially enables an easy access to the complexmagneto-optical conduc-
tivity of anisotropic 2D DWMs from thewell knownmagneto-optical response of isotropic ones. As an
example, we have applied our results to the case of strained graphene. In particular, we quantified by
means of analytical expressions the effects of strain-induced anisotropy andmagnetic field on the light
transmittance and on the polarization rotation. Moreover, from the generalized expression (33) of
the Faraday rotation angle, wewere able to identify the strain-induced effects as in comparison to the
magnetic effects. The former is dependent on the incident polarization direction. Finally, we discussed
the magneto-optical conductivity tensor for anisotropic 2D DWMs with arbitrary pseudospin.
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