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In this paper the linear stability of two liquid layers with flat free-surface coating of both sides of a wall of finite

thickness and thermal conductivity is investigated under the assumption that the liquid/gas Biot numbers are very

small. It is supposed that gravity is negligible and that the atmospheres at both sides of the system have different

temperatures. These conditions allow for the formation of very large thermocapillary convection cells. Thus, the small

wave-number approximation is done up to fourth order to calculate the marginal Marangoni number. From this result,

the critical Marangoni number (Mac) and its corresponding wave number (kc) have been calculated numerically. The

wave number corresponding to the maximum growth rate (kmax) is also calculated for a Marangoni number slightly

above criticality. It is shown that, under these conditions, the flow is stationary. It is found that Mac may have two

magnitudes, one positive and another one negative, depending on the magnitude of some particular parameters of the

problem. It is shown that kc may be zero or different from zero with small but finite magnitude. Some parameters

are fixed and the numerical results are presented by means of plots of Mac, kc, and kmax against different important

parameters of the problem.

KEY WORDS: thin liquid film, thermocapillarity, marangoni convection, solid interlayer, small Biot
number, small wave-number approximation

1. INTRODUCTION

Thin films on substrates with different thermal properties have been investigated for many years. The thermocapillary
problem where the free surface is flat was first investigated by Pearson (1958). In that paper is shown the variation
of the critical Marangoni number and corresponding wave number with respect to the Biot numbers of the fluid-wall
interface and the fluid-atmosphere interface. The latter iscalled a free surface because the dynamics of the atmosphere
is neglected in comparison to that of the fluid. In the thermalMarangoni problem the condition of a flat free surface
was first relaxed by Scriven and Sternling (1964) assuming itis able to deform. When the temperature gradient is
such that the wall temperature is larger than that of the atmosphere the liquid film is susceptible of instability after
reaching a critical magnitude of the temperature gradient.However, it is shown that when the wall is colder than the
atmosphere (heated from above) the film is always stable. In the presence of gravity natural convection phenomena can
be neglected if the liquid layer is very thin. However, gravity has a stabilizing effect when the surface is deformable,
as shown by Takashima (1981a,b), in the stationary and time-dependent cases, respectively. The problem of double
diffusive Marangoni convection was investigated for a flat free surface by McTaggart (1983). Viscoelasticity was
included by Getachew and Rosenblat (1985) for a flat surface.Temperature variation of viscosity is taken into account
by Slavtchev and Ouzounov (1994) and Kalitzova-Kurteva et al. (1996) for stationary convection with deformable
free surface and by Slavtchev et al. (1998) for oscillatory convection and deformable free surface. Due to practical
applications, the convenient control of Marangoni convection has been stressed by Bau (1999), Or et al. (1999), and
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NOMENCLATURE

bi fluid 2 scaled Biot number
bi1 fluid 1 scaled Biot number
Bi fluid 2 free surface-atmosphere

Biot number
Bi1 fluid 1 free surface-atmosphere

Biot number
cP1 fluid 1 heat capacity
cP2 fluid 2 heat capacity
cPW wall heat capacity
d fluid 1 over fluid 2 thicknesses

ratio
d2 thickness of fluid 2
dW wall over fluid 2 thicknesses

ratio
D d/dz

Hh1 fluid 1 coefficient of heat transfer
across the free surfaces

Hh2 fluid 2 coefficient of heat transfer
across the free surfaces

k magnitude of the wave-number
vector

kC critical wave number
kmax wave number of the maximum

growth rate
kS scaled magnitude of the wave

number
kx x component of the wave

number vector
ky y component of the wave

number vector
K1 fluid 1 thermal conductivities
K2 fluid 2 thermal conductivities
K fluid 1 over fluid 2 thermal

conductivities ratio
Ma fluid 2 Marangoni number
MaC critical Marangoni number
Ma1S , Ma2S scaled Ma’s at different orders
Pr fluid 2 Prandtl number
T fluid 2 main temperature profile
T1 fluid 1 main temperature profile
TW wall main temperature profile
T fluid 2 dimensionless temperature
T1 fluid 1 dimensionless temperature

T fluid 2 temperature
T1 fluid 1 temperature
TL temperature of atmosphere below

fluid 1
TU temperature of atmosphere above

fluid 2
TW wall dimensionless temperature
TW wall temperature
∆T = TL − TU atmosphere temperature

difference
w fluid 2 third component of velocity
w1 fluid 1 third component of velocity
W fluid 2 amplitude of third

component of velocity
W1 fluid 1 amplitude of third

component of velocity

Greek Symbols
α1 fluid 1 thermal diffusivity
α2 fluid 2 thermal diffusivity
αW wall thermal diffusivity
α fluid 1 over fluid 2 thermal

diffusivities ratio
γ surface tension
γT fluid 1 over fluid 2 ratio of surface

tension derivatives with respect
to temperature

ε expansion parameter
µ fluid 1 over fluid 2 dynamic

viscosities ratio
µ1 fluid 1 dynamic viscosity
µ2 fluid 2 dynamic viscosity
ν1 fluid 1 kinematic viscosity
ν2 fluid 2 kinematic viscosity
ρ fluid 1 over fluid 2 densities

ratio
ρ1 fluid 1 density
ρ2 fluid 2 density
ρW wall density
Σ real part: growth rate; negative

imaginary part: frequency
σ real part ofΣ growth rate
σ0, σ1 scaledσ’s at different orders
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NOMENCLATURE (continued)

τ fluid 2 temperature amplitude
τ1 fluid 1 temperature amplitude

τW wall temperature amplitude
χ wall over fluid 2 thermal diffusivities ratio

Kechil and Hashim (2009). The problem in a cylindrical geometry was investigated by Dávalos-Orozco and You
(2000) and for a viscoelastic fluid by Moctezuma-Sánchez and Dávalos-Orozco (2015).

More realistic conditions for thermocapillary instability are taken into account when the solid boundary is as-
sumed to have finite thickness and thermal conductivity. These are considered by Takashima (1970), by Yang (1992)
with buoyancy effects, and by Char and Chen (1999) for temperature-dependent viscosity. Besides, a nonuniform
temperature gradient is assumed by Gangadharaiah (2013) and viscoelastic effects are introduced by Hernández-
Hernández and Dávalos-Orozco (2015). For the case of liquid films falling down walls see Davalos-Orozco (2012,
2014, 2015, 2016).

It is of interest that Catton and Lienhard (1984) and Lienhard and Catton (1986) investigated the natural convec-
tion of a system with two liquid layers separated by a solid interlayer. They found that there are conditions where one
of the liquid layers stays in a hydrostatic situation when the other one shows natural convection instability. However,
under other conditions both layers can be unstable, depending in particular on the thickness and conductivity of the
solid interlayer.

It is the goal of the present paper to investigate the linear thermocapillary interaction of two thin liquid layers
coating both sides of a solid interlayer in the absence of gravity. As can be seen in the author’s references reviewed
above, it has been of interest for some years to take into account the presence of a thick wall to obtain results closer
to experimental conditions (see in particular Hernández-Hernández and Dávalos-Orozco, 2015). However, also of
concern is the presence of another liquid layer located on the other side of the wall (due, for example, to the coating
of both sides of a solid plate, for instance, by dip-coating or due to condensation). The influence of this extra liquid
layer on the thermocapillary stability of the whole system is the new subject of this paper. The system is subjected to
a temperature gradient due to the temperature difference between the atmospheres present outside the free surface of
each of the two fluid layers. Systems with two free surfaces have been investigated in the past. For example, Oron et
al. (1995a,b) investigated the thermocapillary instability of a liquid sheet under a temperature gradient with a flat and
a deformable surface, respectively. Davalos-Orozco (1999) calculated the thermocapillary instability of a liquid sheet
in motion with deformable free surfaces. This instability has also been investigated by Fu et al. (2013) and by Tong
et al. (2014) for a viscoelastic fluid. The case when the liquid layer is coating a deformable membrane is discussed in
Dávalos-Orozco (2001).

An assumption in the present paper is that the free surfaces are flat as done by Pearson (1958) and that the
corresponding Biot numbers are very small. The first assumption can be satisfied by fluids with a very large surface
tension number defined as S =γ1d1/ρ1ν1α1, whereγ1 is the surface tension,d1 is the thickness of the layer,ρ1 is
the density,ν1 is the kinematic viscosity, andα1 is the thermal diffusivity, all of fluid 1. Liquids like silicon oils have
a very large S (see Al-Sibai et al., 2002). For example, withγ1 = 0.0187 kg/sec2, ρ1 = 870 kg/m3, ν1 = 2.1609×
10−6 m2/sec,α1 = 2.1609× 10−7 m2/sec with Prandtl number = 10 and for a liquid layer thicknessd1 = 0.001 m, S =
4.60304× 104. The possibility of small Biot numbers is demonstrated in Kabova and Kuznetsov (2002) and Kabova
et al. (2006) from experimental data. This last assumption affects Marangoni convection in such a way that convection
cells are very large, as calculated by Pearson (1958), wherethe wave number tends to zero. The small wave-number
approximation has been applied in natural convection by Hurle et al. (1967); Chapman and Proctor (1980); Proctor
(1981); Dávalos (1984); Dávalos and Manero (1986); and P´erez-Reyes and Dávalos-Orozco (2014).

Natural convection in a two-layer system has been investigated by Nepomnyashchy and Simanovskii (1983,
1984, 1985, 1986). See a complete review in Nepomnyashchy etal. (2012). However, particular attention is given to
the work on natural convection for a two-fluid system with a flat free surface and a flat fluid-fluid interface investigated
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by Gershuni and Zhukhovitskii (1986). The reason is that these authors use a small Biot number approximation in the
problem. Some characteristics of their results are similarto those obtained in this paper for Marangoni convection, as
will be shown presently. Notice that the small Biot and wave-number approximation was also used for thermocapillary
convection in a liquid sheet with flat surfaces by Oron et al. (1995a).

Here the small wave-number approximation is applied up to fourth order in the wave-number expansion of the
variables. This is a new procedure under this approximation. It is important to point out that the expansion is usually
done up to second order in the wave-number expansion. The goal is to be able to capture the minimum of the marginal
Marangoni numbers (that is, the critical Marangoni number MaC) with critical wave number kC of both zero and
finite magnitude. Besides, it is of interest to calculate thewave number of the maximum growth rate kmax in regions
where the critical wave number is zero and different from zero. Notice that by definition, the marginal curves and in
particular the critical point occur when the growth rate of the perturbations is zero. A slight increase from criticality
of the Marangoni number leads to a temporal growth of the perturbations. As will be seen presently, the number of
parameters is very large and therefore some of them will be fixed. A variety of plots of MaC , kC , andkmax against
some parameters of the problem are presented in order to understand the behavior of this complex system.

The paper is organized as follows. The next section presentsthe description of the system and the corresponding
equations of motion and heat transfer of the two fluids and thesolid interlayer. The numerical results are given in
Section 3. Section 4 presents the conclusions.

2. EQUATIONS OF MOTION

The goal of this paper is to investigate the thermocapillarystability of a system composed of two liquid layers coating
both sides of a solid wall in the absence of gravity. The wall and liquid layers extend to infinity in the horizontal
directions. The free surfaces are assumed to be flat and calculations are done in the same way as Pearson (1958). This
system is sketched in nondimensional form in Fig. 1 where fluid 2 has thickness 1 and fluid 1 has thicknessd. The wall
has thicknessdW . The dashed lines are the free surfaces of each fluid and they are exposed to the ambient atmospheres
which have different temperatures. In the figure, the atmosphere below fluid 1 is hotter than that above fluid 2, but the
contrary may also be possible because gravity is not presentin this problem. This situation can produce Marangoni
instability in one of the two layers after a large enough temperature difference is reached between the atmospheres.
However, the perturbations of the unstable liquid layer caninfluence the stable one due to the thermal interaction they
have through the thick wall.

The system of equations corresponds to the equations of motion of the two fluids and the equations of heat
transfer of the wall and the two fluids, all of them with their corresponding boundary conditions. They are made
nondimensional as follows. The distance is measured withd2 the thickness of fluid 2; time withd2

2/α2, whereα2 is the
thermal diffusivity of fluid 2; velocity withα2/d2; and pressure withρ2α2ν2/d2

2, whereν2 is the kinematic viscosity

FIG. 1: Sketch of the system in nondimensional form. Two fluid layerscoating both sides of a solid interlayer in the absence of
gravity. The free surfaces are assumed flat and with different temperature
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of fluid 2. The temperature is scaled with∆T = (TL – TU )/den, whereTL is the temperature of the atmosphere below
fluid 1 andTU is the temperature of the atmosphere above fluid 2. The denominator is defined as

den =
d

K
+

dW
χ

+ 1. (1)

Here,d = d1/d2, whered1 andd2 are the thicknesses of fluid 1 and fluid 2, respectively.dW = dW /d2, where
dW is the thickness of the wall.K = K1/K2, whereK1 andK2 are the thermal conductivities of fluid 1 and fluid 2,
respectively.χ = KW /K2, whereKW is the thermal conductivity of the wall.

The nondimensional equations of motion, heat transfer, andcontinuity of fluid 2 are

1
Pr

d
−→
V

dt
= −∇P +∇2−→V , (2)

dT

dt
= ∇2T , (3)

∇ ·
−→
V = 0, (4)

where
−→
V is the velocity vector,P is the pressure,T = den (T−TU )/(TL−TU ) is the temperature,T is the dimensional

temperature, andd/dt = ∂/∂t +
−→
V · ∇ is the Lagrange operator of fluid 2. The Prandtl number is defined as Pr =

ν2/α2.
The equations of fluid 1 are

1
Pr

d∗
−→
V1

dt
= −

1
ρ
∇P1 +

µ

ρ
∇2−→V1, (5)

d∗T1

dt
= α∇2T1, (6)

∇ ·
−→
V1 = 0, (7)

where
−→
V1 is the velocity vector,P1 is the pressure,T1 = den (T1 − TU )/(TL − TU ) is the temperature,T1 is the

dimensional temperature of fluid 1, andd∗/dt = ∂/∂t +
−→
V1 · ∇ is the Lagrange operator of fluid 1.µ is the ratio

µ1/µ2, whereµ1 is the dynamic viscosity of fluid 1 andρ = ρ1/ρ2, whereρ1 is the density of fluid 1. The ratioα =
α1/α2, whereα1 is the thermal diffusivity of fluid 1, can also be written as

α =
K

ρ(cP1/cP2)
.

The heat capacities of fluid 1, fluid 2, and the wall arecP1, cP2, andcPW , respectively. The heat diffusion
equation of the wall is

∂TW

∂t
=

αW

α2
∇2TW . (8)

HereTW = den (TW −TU )/(TL −TU ) is the wall temperature,αW is the wall thermal diffusivity, andTW is the
dimensional temperature of the wall. The ratio of diffusivities can also be expressed as

αW

α2
= χ

/

(

ρW

ρ2

cPW

cP2

)

,

whereρW is the density of the wall.
The main temperature profiles (defined without bars) of the system are calculated under hydrostatic conditions.

Their boundary conditions (see Fig. 1) in nondimensional form are the following.

T = 0 at z = 1 (9)
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T = TW and
dT

dz
= χ

dTW

dz
at z = 0 (10)

TW = T1 and
χ

K

dTW

dz
=

dT1

dz
at z = −dW (11)

T1 = den at z = −dW − d (12)

The nondimensional solutions of the main temperatures of fluid 2, the wall, and fluid 1 are, respectively,

T (z) = 1− z, (13)

TW (z) = 1−
z

χ
, (14)

T1(z) = den−
1
K

(z + dW + d). (15)

To calculate the linear equations satisfied by the fluid velocities perturbations, the equations of motion of fluid 1
and fluid 2 are operated twice by the rotational operator or rotor (∇×). Now, the linear heat diffusion equations only
contain the vertical component of velocity of the corresponding fluid 1 or 2 (see below). Therefore, it is found that
only the third components of the equations obtained from therotational operations are coupled to their corresponding
thermal diffusion equation. Those components only containthe third component of velocity. Thus,w andw1 are
defined as the third components of the velocity perturbations of fluid 2 and fluid 1, respectively. Moreover, use is
made of normal modes for the velocities and temperatures of fluid 1, fluid 2, and the wall. In this case (w, w1, T , TW ,
T1) have the form (W , W1, τ, τW , τ1) exp[i(kxx + kyy) + Σt], where (W , W1, τ, τW , τ1) only depend onz and
represent the amplitudes of the velocity and temperature perturbations. The meaning of these normal modes is that
the infinite plane is filled with tessellated horizontal structures. TheΣ = Re(Σ) + i Im(Σ) is a complex number whose
real part Re(Σ) is the growth rate and its imaginary part Im(Σ) is the frequency of oscillation.kx andky are thex
andy components of the wave-number vector. In normal modes the Laplacian operator changes into∇2 → D2 − k2

and the time partial derivative into∂/∂t → Σ, where the definitionsD = d/dz andk2 = k2
x + k2

y are used. In what
follows, the magnitude of the wave number is scaled ask = εkS , wherekS is the order one scaled wave number and
ε is the expansion parameter which satisfiesε ≪ 1. The calculations presented below were also done including the
frequency of oscillation Im(Σ) [in the marginal state with Re(Σ) = 0] and it was found that the frequency needed to
make zero the imaginary part of the marginal Marangoni number is zero. Therefore, in order to calculate the most
dangerous mode of instability, it is assumed that in nonoscillatory convection, the growth rate is scaled as Re(Σ) = σ

= ε
4 (σ0 + ε

2
σ1).

In this way, by use of the main temperature profiles the linearperturbation equations for fluid 2 are

1
Pr

ε
4(σ0 + ε

2
σ1)
(

D2 − ε
2k2

S

)

W −
(

D2 − ε
2k2

S

)2
W = 0, (16)

ε
4(σ0 + ε

2
σ1)τ−W =

(

D2 − ε
2k2

S

)

τ, (17)

for fluid 1,
1
Pr

ε
4(σ0 + ε

2
σ1)
(

D2 − ε
2k2

S

)

W1 −
µ

ρ

(

D2 − ε
2k2

S

)2
W1 = 0, (18)

ε
4(σ0 + ε

2
σ1)τ1 −

1
K

W =
(

D2 − ε
2k2

S

)

τ1, (19)

and for the wall,
ε

4(σ0 + ε
2
σ1)τW =

αW

α2

(

D2 − ε
2k2

S

)

τW . (20)

Next, we address the boundary conditions for the velocitiesand the temperatures. The free surfaces are assumed
flat and the components of the velocities of fluid 1 and fluid 2 perpendicular to the surface have to be zero.

Dτ = −Biτ, W = 0, D2W = −Maε2k2
Sτ at z = 1, (21)
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τ = τW , Dτ = χDτW , W = 0, DW = 0 at z = 0, (22)

τW = τ1,
χ

K
DτW = Dτ1, W1 = 0, DW1 = 0 at z = −dW , (23)

Dτ1 =
Bi1
d

τ1, W1 = 0, D2W1 = γTMaε2k2
Sτ1 at z = −dW − d. (24)

Bi = Hh2d2/K2 and Bi1 = Hh1d1/K1 are the Biot numbers of fluid 2 and fluid 1, respectively. Hh2 and Hh1 are the
coefficients of heat transfer across the free surfaces of fluid 2 and fluid 1, respectively. Notice that Bi1/d = Hh1d2/K1.
The Marangoni number is defined as

Ma = −
dγ

dT

∆T

den

d2

ρ2ν2α2
, (25)

whereγ is the surface tension of fluid 2 anddγ/dT < 0 is the derivative of that surface tension with respect to
temperature which is negative for most fluids.γT = (dγ1/dT )/(dγ/dT ) is the ratio of the derivative of surface tension
with respect to temperature of fluid 1 over that of fluid 2.

Here it is assumed that the Biot numbers are very small. In this case, very large scale convection cells are formed
and the flow is very slow (see Pearson, 1958). Therefore, the wave number is very small, too, and it will be used as
an expansion parameter, in the formεkS ≪ 1 with kS order one. In this way, the Biot numbers are scaled as Bi =
ε

4k4
S bi and Bi1 = ε

4k4
S bi1, where bi and bi1 are of order one.

It is of interest here to calculate Ma corresponding to the marginal state of the system where the real part Re(Σ) =
σ = 0, that is, zero growth rate. It is also of interest to calculate the wave numberkmax corresponding to the maximum
growth rate when the Marangoni number is slightly above the marginal state andσ > 0. Recall that the calculations
presented below were done with Im(Σ) [and Re(Σ) = 0] and it was found that the frequency needed to make zero the
imaginary part of the marginal Marangoni number is zero. That is, under the present approximation in the marginal
state,Σ should always be zero and the flow is stationary.

In the equations and boundary conditions the exponent of thewave numberk is always even. Therefore the
following expansion of the variables is made, taking into account that the flow motion is slow.

W = ε
2W0 + ε

4W1 + ε
6W2 + · · · τ = τ0 + ε

2
τ1 + ε

4
τ2 + · · · , (26)

W1 = ε
2W10 + ε

4W11 + ε
6W12 + · · · τ1 = τ10 + ε

2
τ11 + ε

4
τ12 + · · · , (27)

τW = τW0 + ε
2
τW1 + ε

4
τW2 + · · · Ma = Ma0 + ε

2Ma1S + ε
4Ma2S + · · · . (28)

The marginal Marangoni number is calculated up to fourth order in k using the Maple algebra package. This
allows us to find a critical Marangoni number with a corresponding finite critical wave number when the Biot num-
bers are very small but different from zero. There are also conditions under whichkC can be zero. This means that
the convection cell is very large and will fill the whole liquid layers. The algebraic calculations are very long, com-
plex, and tedious and will not be presented here. The procedure is similar to that found in the literature for natural
convection (Hurle et al., 1967; Chapman and Proctor, 1980; Proctor, 1981; Dávalos-Orozco, 1984; Dávalos-Orozco
and Manero, 1986; Gershuni and Zhukhovitskii, 1986; Pérez-Reyes and Dávalos-Orozco, 2014) and for a liquid sheet
with flat free surfaces (Oron et al., 1995a). It will be shown presently that the scaled Ma1S = k2

S Ma1 and the scaled
Ma2S = k4

S Ma2. Thus, using the identityk = εkS , the calculated marginal Marangoni number has the form

Ma = Ma0 + k2Ma1 + k4Ma2. (29)

The coefficients Ma0, Ma1S , and Ma2S were obtained from the first, second, and third solvability conditions, respec-
tively (see the Appendix). Here,

Ma0 =
48α(χdW + dK + 1)

α− d3γT
, (30)
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and

Ma1 =
16

5Kχd

α

(α− d3γT )3

[

K2χd10
γ

2
T − 3χKγ

2
T (χdW + 1) d9 − 9χγ2

T (χdW + 1)2
d8 − 5KγT

[

dWγT

×
(

χ2d2
W + 3χdW + 3

)

+ χ (Kα+ γT (1− 3bi))
]

d7 − 15KχγT

[

α (χdW + 1)−Kbi1γT

]

d6

− 15K2
αγT

[

dw2χ+ χ+ 2dW
]

d5 − 5αKχ
[

dWγT

(

χd2
W + 3dW + 3χ

)

+ (Kα+ (1+ 6bi)γT )
]

d4

− 3αK2
[

5αKdW + (3αK + 10bi1γT )χ
]

d3 − 3α2k2χ
[

5d2
W + 6χdW + 1

]

d2

−Kχα2
[

5χKd3
W + 9χ2d2

W + 3χdW − 15bi− 1
]

d+ 15K2χbi1α
2
]

.

(31)

The number of terms in Ma2 is very large and will not be presented here. These Ma0 and Ma1 show a characteristic
common to Ma2. That is, the denominatorα− d3

γT . The marginal Marangoni number can be written as

Ma =
Ma0

α− d3γT
+ k2 Ma1

(α− d3γT )3
+

Ma2

(α− d3γT )5
k4, (32)

whereMa0, Ma1, andMa2 are the Marangoni coefficients without their correspondingdenominators. It is interesting
that this denominator is similar to that found by Gershuni and Zhukhovitskii (1986) in natural convection with an
interface and a free surface in a stratified two-layer system. It depends on the fluid properties and fluid layer’s relative
thicknesses. Notice here that the powers of the denominators are odd. This brings about the possibility of having
negative marginal and critical Marangoni numbers when, according to the magnitudes of the parameters involved, the
sign ofα− d3

γT is changed.
The minimum of Eq. (29) is calculated taking the derivative with respect tok. A third-order algebraic equation is

obtained fork. Two non-negative critical wave numbers are possible,kC = 0 andk2
C = − Ma1/2 Ma2. Substitution of

kC in Eq. (29) gives the critical Marangoni number MaC = Ma0 − Ma2
1/4 Ma2 (for kC > 0) and MaC = Ma0 (for kC

= 0). In the lastkC the sign ofα− d3
γT has no effect because the ratio has(α− d3

γT )
2 in the resulting numerator.

In casekC is imaginary then the the critical wave number iskC = 0. Thus it can be shown thatkC = 0 corresponds to
a maximum of Ma when Ma1 < 0 and to a minimum when Ma1 > 0. The contrary occurs whenkC > 0. In this case,
kC corresponds to a maximum of Ma when Ma1 > 0 and to a minimum when Ma1 < 0.

The critical Marangoni number and the corresponding critical wave number are calculated numerically as fol-
lows. First, all the parameters except one are fixed and each Ma0, Ma1, and Ma2 are evaluated varying the parameter
left. In this way, it is possible to present the plots of MaC andkC in the figures of the next section.

The possibility ofkC = 0 is found immediately in a particular case where the thickness of fluid 1 and the heat
conductivity of the wall tend to zero (fluid 1 does not exist).That is, whend→ 0 andχ→ 0 in Ma0, to get MaC = 48.
This value was first obtained by Pearson (1958) in the limit when both Biot numbers and the wave number tend to zero.

The physical meaning of a critical wave numberkC = 0 is that one convection cell is extremely large and can fill
the whole liquid layer. In this case, the marginal curve of Mahas the form of a parabola with respect tok which has
its vertex (its minimum) located atk = 0.

When the system is slightly above the marginal state, the amplitude of the unstable convection cells grows with
time. As explained above this growth is represented by the growth rateσ = ε

4 (σ0 + ε
2
σ1). The second termε6

σ1 is
extremely large and will not be presented here. Thus, only the first one is given below.

ε
4
σ0 = (1/48)

{

[k2
(

α− d3
γT

)

ε
2Ma1S ]/[dK + α+ (ρW /ρ2)(cpW /cp2)dWα]

}

−

{

(k4
α)
/

[

15Kχd

(

dK + α+
ρW

ρ2

cpW
cp2

dWα

)

(

α− d3
γT

)2
]}

[

K2χd10
γ

2
T − 3χKγ

2
T (χdW + 1)

× d9 − 9χγ2
T (χdW + 1)2

d8 − 5KγT

[

dWγT

(

χ2d2
W + 3χdW + 3

)

+ χ (Kα+ γT (1− 3bi))
]

d7

− 15KχγT ×
[

α (χdW + 1)−Kbi1γT

]

d6 − 15K2
αγT

[

dw2χ+ χ+ 2dW
]

d5 − 5αKχ
[

dWγT

×
(

χd2
W + 3dW + 3χ

)

+ (Kα+ (1+ 6bi)γT )
]

d4 − 3αK2
[

5αKdW + (3αK + 10bi1γT )χ
]

d3

− 3α2k2χ
[

5d2
W + 6χdW + 1

]

d2 −Kχα2
[

5χKd3
W + 9χ2d2

W + 3χdW − 15bi− 1
]

d+ 15K2χbi1α
2
]

.

(33)
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This equation may be expressed as

ε
4
σ0 =

{

1
/

(

dK + α+
ρW

ρ2

cpW
cp2

dWα

)}

(

A1

(α− d3γT )
2k

4 + B1
(

α− d3
γT

)

k2
ε

2Ma1S

)

, (34)

whereA1 andB1 depend on the parameters of the problem but not onk and Ma1S . In this case, the small magnitude
of ε2Ma1S has to be given to be slightly above the critical MaC . It is important to note thatε4

σ0 is useful only to
describe the growth rate in the region where the critical wave number iskC = 0. Theε6

σ1 is useful for the growth
rate whenkC > 0 as will be seen presently. It has the form

ε
6
σ1 =

[

1
/

(

dK + α+
ρW

ρ2

cpW
cp2

dWα

)]

(

A2

(α− d3γT )
4k

6 +B2
(

α− d3
γT

)

k2
ε

4Ma2S

)

, (35)

whereA2 andB2 depend on the parameters of problem but not onk and Ma2S . In the following section the graphs of
ε

4
σ0 andε6

σ1 are not presented. Instead, the graphs of the most dangerousmode are presented forkmax. The formula
of kmax from Eq. (34) is valid whenkC = 0 has the form

kmax =

(

−
B1
(

α− d3
γT

)3
ε

2Ma1S

2A1

)1/2

. (36)

It is useful when the radicand is positive. The formula ofkmax from Eq. (35) is valid whenkC > 0 has the form

kmax =

(

−
B2
(

α− d3
γT

)5
ε

4Ma2S

3A2

)1/4

. (37)

Again, it is useful when the radicand is positive. Observe that both growth rates require the wall over fluid 2
densities and heat capacities ratiosρW /ρ2 andcpW /cp2, respectively. However, the term containing them simplifies
when calculating bothkmax’s of Eqs. (36) and (37), which are required below to describethe most unstable mode of
instability. That term also simplifies when calculating Ma1S and Ma2S . Results of the numerical analysis of Ma in
Eq. (29) are presented in the following section along with those of Eq. (37) [and Eq. (36) when needed].

3. NUMERICAL RESULTS OF Ma IN EQ. (29)

In this section numerical results of Eq. (29) for the marginal and critical Marangoni number are calculated. The
number of parameters is very large and some of them will be fixed to understand in an easier way the behavior of the
critical Marangoni number under different conditions. First it will be assumed that both fluids and their corresponding
atmospheres are the same. In that case, it is clear that bi1/d = bi. Under this assumption the following parameters
result, fixed through the paper:ρ = K = α = γT = 1. In other words, the fluid densities, heat conductivities, heat
diffusivities, and temperature derivatives of surface tension are all the same.

The variable parametersχ, bi, dW , andd correspond to the wall-fluid heat conductivities ratio, theBiot number of
fluid 2, the relative thickness of the wall, and the relative thickness of fluid 1, respectively. Under these assumptions,
the term in the denominators of Eq. (32) becomes 1− d3. It only depends on the relative thickness of fluid 1.

In particular, it is important to distinguish between the results ford smaller than 1 (thickness of fluid 2 larger than
that of fluid 1) from those ford larger than 1 (thickness of fluid 2 thinner than that of fluid 1). Two separate graphs
are given for these two cases.

Two samples of marginal curves are shown in Fig. 2. In Fig. 2(a) the parameters areχ = 0.1,dW = 1,d = 0.1< 1,
and the marginal Marangoni number is positive. Here, an increase of the Biot number, that is, the increase of the heat
transfer across the free surface of fluid 2 changes the marginal curves in such a way that their minima, the critical
points, move up and to the left and the critical wave number tends to zero. In Fig. 2(b) the parameters are bi = 0.1,
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(a) (b)

FIG. 2: Two sample figures with different types of marginal curves; (a) Ma vsk (χ = 0.1,dW = 1, d = 0.1< 1), bi = (1) 0, (2)
0.01, (3) 0.03, (4) 0.05, (5) 0.1, (6) 0.15, (7) 0.2; (b) Ma vsk; negative Marangoni number (bi = 0.1,χ = 0.1,d = 2> 1),dW = (1)
0.001, (2) 0.01, (3) 0.05, (4) 0.1, (5) 0.5, (6) 1, (7) 2

χ = 0.1,d = 2 > 1. The marginal Marangoni number is negative. A characteristic of the minima of the curves (the
points closer to thek axis) is that the change of the critical wave number is not monotonic with respect to an increase
of dW , the relative thickness of the wall.

Notice that the wave number of the minima of the marginal curves isk ≤ 0.5 and that the Biot numbers are order
one or less. Care is taken through the paper to satisfy these two conditions.

Now, the goal is to know the magnitude of the critical Marangoni number MaC , the corresponding critical wave
numberkC , andkmax, the wave number corresponding to the maximum growth rate (most dangerous mode). These
are shown against the scaled Biot number forχ = 0.1, the relative heat conductivity of the wall, anddW = 1, a wall
thickness equal to that of fluid 2, in Fig. 3. MaC is presented in Fig. 3(a) against bi for different magnitudes of d <
1, the relative thickness of fluid 1. The increase of MaC with bi is monotonic up to a magnitude where it becomes
constant. This can be explained in Fig. 3(b) where it is foundthat at that particular bi and over, the critical wave
number becomes zero. Notice that atkC = 0, Ma in Eq. (29) always has the same magnitude, Ma0, for the given
parameters. The physical meaning is that the increase of heat transfer across the free surfaces is stabilizing only up to
a magnitude where its effect is not important.

In contrast, as explained above, when the relative thickness of fluid 1,d → 0, the decrease of bi leads tokC →

0 if alsoχ → 0. This can be seen in the following asymptotic formula for small d where the relative thickness of the
wall is dW = 1:

Ma = 48(1+ χ) +
16
5

(

1+ 30bi− 8χ− 9χ2
)

k2

+
16
175

(

3− 420bi(1+ χ) + 124χ+ 310χ2 + 189χ3
)

k4

+

[

48−
288
5

(1+ χ) k2 +
16
175

(

474−
1050bi

χ
− 420bi+ 1040χ+ 567χ2

)

k4

]

d.

(38)

In this case fordW = 1, the square of the critical wave number has the expression

k2
C =

35χ
(

1+ 30bi− 9χ2 − 8χ− 18dχ− 18d
)

(840χ (χ+ 1+ d) + 2100d)bi − χΩ
, (39)
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(a) (b)

(c)

FIG. 3: χ = 0.1, dW = 1; (a) MaC vs bi; (b) kC vs bi; and (c) most dangerous modekmax vs bi, solid whenkC > 0 (for
ε

4Ma2S = 0.1) and dashed whenkC = 0 (for ε2Ma1S = 0.1); d = (1) 0.1, (2) 0.2, (3) 0.3, (4) 0.4

whereΩ =
[

378χ3 + (620+ 1134d)χ2 + (248+ 2080d)χ+ 6+ 948d
]

. When bi = 0 oneχ simplifies and the de-
nominator ofk2

C is negative. A condition for positivek2
C is that the numerator be negative. Ifk2

C is negative the
critical wave number can only be zero. Therefore, in order tohavekC = 0, the numerator should be positive and one
of the roots gives the condition 0≤ χ ≤ 1/9 − 2d. This means that it is still possible to havekC = 0 when the
relative conductivity of the wallχ is small but different from zero. Remember thatd is assumed small in the formula.
The case when bi6= 0 is a little more complex. It is interesting that under this situation the root corresponding to
the previous case when bi = 0 does not give the needed condition for kC = 0. Then, the other root of the numerator
corresponding to positiveχ now has the formχr = −d − 4/9 − (1/9)[(9d − 5)2 + 270 bi]1/2. The condition for
kC = 0 is that (positive χ root of the denominator of k2

C) < χ ≤ χr. In this regionk2
C is always negative due to

its denominator. Now, considering thatχ is of the same order asd and that they tend to zero simultaneously, an
expression for Ma is obtained containing bi andk alone. Under this assumption the critical wave number is always
kC = 0. The extrema obtained fork correspond to maxima (not minima) of Ma which, by the way, areoutside the

Volume 5, Issue 1, 2017
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small wave-number approximation. This example for smalld only shows a facet of the whole complexity of the
problem.

The curves ofkmax, the most dangerous mode, are presented in Fig. 3(c). The solid lines [Eq. (37) withε4Ma2S =
0.1] and the dashed lines [Eq. (36) withε2Ma1S = 0.1] correspond tokC > 0 andkC = 0 [see Fig. 3(b)], respectively.
It is clear that a singularity occurs in both of thekmax at the bi wherekC drops to zero in Fig. 3(c).

Figure 4 presents results ford > 1. The thickness of fluid 1 is larger than that of fluid 2. In thiscase MaC is
negative [see explanation of Fig. 2(b)]. The physical meaning is that the system is unstable only when the temperature
of the atmosphere outside fluid 2 is larger than that of the atmosphere outside fluid 1. The fixed parameters are the
relative conductivity of the wallχ = 0.1 and relative thickness of the walldW = 1. Graphs of the critical Marangoni
number against the scaled Biot number are shown in Fig. 4(a).The curves for differentd only vary slightly in the
range of bi which has to be of order one. Therefore in this casethe increase of heat transfer across the free surface
is almost negligible. However, the influence that the relative thickness of fluid 1 has on the stability is clear. Plots of

(a) (b)

(c)

FIG. 4: χ = 0.1,dW = 1; negative MaC ; (a) MaC vs bi; (b)kC vs bi; and (c) most dangerous modekmax vs bi (for ε4Ma2S =

−0.1); d = (1) 1.5, (2) 2, (3) 3, (4) 4
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kC vs bi are given in Fig. 4(b). Notice that the curve corresponding to d = 4 is below that ofd = 3 and that it has
a tendency to cross below the curve ofd = 2. Figure 4(c) shows that the wave number of the most dangerous mode
increases slowly but monotonically with bi. Notice in Eq. (37) that hereε4Ma2S is negative. However, the sign is
corrected with 1− d3 which is also negative ford > 1.

Graphs of MaC , kC , andkmax againstχ (the relative heat conductivity of the wall) for bi = 0.1,dW = 1 are
plotted in Fig. 5. Here again the magnitude ofd is smaller than 1. At first sight, the growth of MaC with respect to
χ is monotonous in Fig. 5(a). However, it is not the case forχ < 0.1 andd = 0.2, whereχ has a destabilizing effect.
Except for this case, the figure shows that the increase of therelative conductivity of the wallχ stabilizes.

The behavior of the curves ofkC vsχ is different as can be seen in Fig. 5(b). Each curve has a maximum (in some
cases the maxima are abovek = 0.5) after which the curves decrease. The physical meaningof this maximum is that
the convection cells at criticality can have a minimum size,represented by their wavelength, for a certain magnitude

(a) (b)

(c)

FIG. 5: bi = 0.1,dW = 1; (a) MaC vsχ; (b) kC vsχ; and (c) most dangerous modekmax vsχ (for ε4Ma2S = 0.1); d = (1) 0.1,
(2) 0.2, (3) 0.3, (4) 0.4
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of χ. Notice the peculiar behavior of the curve corresponding tod = 0.1. It is interesting in Fig. 5(c) that the curves
of kmax have maxima, too, with respect toχ, as occurs withkC , but at different magnitudes ofχ.

When the relative thickness of fluid 1d is larger than 1, the Marangoni number is negative as shown inFig. 6. In
Fig. 6(a) for MaC it is observed thatχ also has a stabilizing effect. It is more stabilizing ford = 1.5. In other words,
the stability is enhanced decreasing the relative thickness of fluid 1 whenχ increases. The graphs of the critical wave
number are presented in two parts due to the peculiar behavior of the curves. In Fig. 6(b) only the range 0< χ < 0.05
is presented to understand how the curve ofd = 3 crosses that ofd = 4. Figure 6(c) shows how for largerχ the curve
of d = 2 crosses those ofd = 4 andd = 3 to become the larger critical wave number in a wide range ofχ. Each curve
shows a maximum which corresponds to the smallest cell size.The wave number corresponding to the maximum
growth rate is plotted in Fig. 6(d). Each curve shows one maximum but, in contrast to the curves ofkC in Fig. 6(c),
the curves do not intersect each other.

(a) (b)

(c) (d)

FIG. 6: bi = 0.1,dW = 1; negative MaC ; (a) MaC vs χ; (b) kC vs χ, 0 < χ < 0.05; (c)kC vs χ, 0 < χ < 4; and (d) most
dangerous modekmax vsdW (for ε4Ma2S = −0.1); d = (1) 1.5, (2) 2, (3) 3, (4) 4
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Figure 7 presents the variation of MaC andkC against the relative thickness of the walldW for bi = 0.1 andχ =
0.1. In Fig. 7(a) clearly, the behavior of MaC is not monotonous fordW ≤ 1. It is destabilizing in some places of the
range showing a minimum in each curve. For largerdW the growth of MaC is monotonous. Notice that the increase
of d, the relative thickness of fluid 1 is stabilizing. The corresponding graphs ofkC are shown in Fig. 7(b). Here,
each curve presents a maximum and has a fast decrease to zero whendW is finite but very small. Observe that in the
picture the curves do not reach the horizontal axis, but in fact they should go directly to a zero critical wave number.
The graphs ofkmax are given in Fig. 7(c). There, the dashed curves correspond to the region wherekC = 0 and the
solid ones correspond to the region wherekC > 0. Notice that the solid curve 4 ford = 0.4 nearly touches the vertical
axis.

The results ford > 1 are presented in Fig. 8 for negative MaC . The thickness of fluid 1 is larger than that of fluid
2. As can be seen, the increase ofdW has a stabilizing effect which is enhanced by the decrease ofd. As shown, MaC

(a) (b)

(c)

FIG. 7: bi = 0.1,χ = 0.1; (a) MaC vs dW ; (b) kC vs dW ; and (c) most dangerous modekmax vs dW , solid whenkC > 0 (for
ε

4Ma2S = 0.1) and dashed whenkC = 0 (for ε2Ma1S = 0.1);d = (1) 0.1, (2) 0.2, (3) 0.3, (4) 0.4
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has a very small variation ford = 3 andd = 4, in contrast to curvesd = 1.5 andd = 2. In Fig. 8(b) forkC it is notable
that the curves cross each other. Besides, that ofd = 4 becomes the larger one whendW increases. Physically, the
convection cells of the smallest size correspond to this. All the curves touch the vertical axis even though the curve
of d = 4 presents a maximum. Consequently,kC has a finite value whendW = 0. Plots ofkmax vs dW are given in
Fig. 8(c). Observe that all the curves have a finite value atdW = 0 where each one has a maximum and that they show
a monotonic decrease withdW .

4. CONCLUSIONS

The thermocapillary stability of two fluid layers coating both sides of a thick wall with finite thermal conductivity
has been investigated. It is assumed that the free surface ofeach fluid is flat as done by Pearson (1958). Due to
the large number of parameters it is supposed that the two liquid layers are made of the same fluid and that their

(a) (b)

(c)

FIG. 8: bi = 0.1,χ = 0.1; negative MaC ; (a) MaC vs dW ; (b) kC vs dW ; and (c) most dangerous modekmax vs dW (for
ε

4Ma2S = −0.1); d = (1) 1.5, (2) 2, (3) 3, (4) 4

Interfacial Phenomena and Heat Transfer



Two Liquid Layers Coating Both Sides of a Thick Wall 75

corresponding atmospheres are also the same but at different temperatures. This reduces the number of parameters
to a few. Nevertheless, a large variety of phenomena are found. Two possibilities of instability are found. One for
a positive critical Marangoni number and another one for a negative one. The negative MaC means that now the
instability is possible when the atmosphere next to fluid 1 iscolder than that next to fluid 2. The former is possible
when the relative thicknessd of fluid 1 is d < 1. The latter corresponds tod > 1. The interaction of the two fluids’
instabilities leads to interesting results. It is found that for d < 1 an increase of the Biot number of fluid 2, bi, gives
the possibility of havingkC = 0 after a definite magnitude influenced byd. After this magnitude of bi, MaC remains
constant because the term Ma0 in Eq. (29) is independent of bi. However, analytical conditions have been calculated
that lead tokC = 0 when bi is small in a formula obtained asymptotically for small d anddW = 1. It is interesting
that these conditions make this possible even whenχ is small but different from zero. The result may be due to the
important influence of the finite relative thickness of the wall, dW , as shown in other problems published in previous
papers (Hernández-Hernández and Dávalos-Orozco, 2015; Dávalos-Orozco, 2012, 2014, 2015, 2016).

When the magnitude ofkC is zero and different from zero the curves ofkmax have to be calculated by two
different formulas, Eqs. (36) and (37), respectively. Eachequation has a singularity at the bi wherekC drops to zero.
Whend > 1, MaC is negative andkmax increases monotonically.

The variation ofχ, the relative wall thermal conductivity, has a stabilizingeffect. However, for small magnitudes
of χ and particular values ofd, the behavior of MaC is not monotonic and shows a small depression (more instability).
The graphs ofkC present a maximum for every magnitude ofd, but it tends to zero whenχ tends to zero. Ifd >
1 the growth of the magnitude of the negative MaC is monotonic withχ. However, the growth ofkC is interesting
because the curves cross each other increasingχ and the curve that attains the larger critical wave number isthat ofd
= 2, located in the middle range ofd investigated. It is noteworthy that the curves ofkmax have a maximum for both
positive and negative MaC .

The relative thickness of the wall also has an interesting effect on MaC which here, too, has a small depression
(destabilizing effect) when 0< dW < 2. For larger values ofdW the system is stabilized monotonically. The critical
wave number also has a maximum for each magnitude ofd, but nowkC drops to zero for small enough magnitudes
of dW . Whend > 1,kC has maximum only for some magnitudes ofd, but, in contrast,kC has a finite value whendW
= 0. In this case, too,kmax has to be calculated with Eq. (36) whenkC = 0 and with Eq. (37) whenkC > 0. However,
for MaC < 0, kmax has a monotonic decrease withdW .

In this paper, the complexity of this particular two-fluid system has been reviewed in the form of graphs where
a variety of parameters has been used to understand the thermocapillary instability. The effect of the free-surface
deformation contributes with another degree of freedom to the instability. The details of the problem have been
investigated and are now in preparation for publication.
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APPENDIX

This Appendix presents the equations of motion and heat transfer at the different orders used in this paper along with
their corresponding boundary conditions. At zeroth order for fluid 2, they are

d4W0

dz4
= 0, (A.1)

with W0 = 0 at z = 0 and W0 = 0,
d2W0

dz2
+ k2

SMa0τ0 = 0 at z = 1, (A.2)

d2
τ0

dz2
= 0, (A.3)

Volume 5, Issue 1, 2017
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with τ0 = τW0,
dτ0

dz
= χ

dτW0

dz
at z = 0, and

dτ0

dz
= 0, at z = 1. (A.4)

At zeroth order for fluid 1, they are
d4W10

dz4
= 0, (A.5)

with W10 = 0 at z = −dW and W10 = 0,
d2W10

dz2
− γT k

2
SMa0τ10 = 0 at z = −dW − d, (A.6)

d2
τ10

dz2
= 0, (A.7)

with τ10 = τW0,
dτ10

dz
=

χ

K

dτW0

dz
at z = −dW , and

dτ10

dz
= 0, at z = −dW − d. (A.8)

At zeroth order for the wall, it is:
d2
τW0

dz2
= 0, (A.9)

which needs the boundary conditions presented above. At this order the solution of the three temperatures are equal
and are normalized to 1. That is,τ0 = τW0 = τ10 = 1. A solvability condition is obtained from Eqs. (A.12), (A.17), and
(A.19) of the temperatures at the next order using the boundary conditions. It consists of a system of two homogeneous
algebraic equations from which it is possible to obtain Ma0. One of the constants remains undetermined but simplifies
automatically in the process.

Now the equations at the next order are presented. At first order for fluid 2, they are

d4W1

dz4
− 2k2

S

d2W0

dz2
= 0, (A.10)

with W1 = 0 at z = 0 and W1 = 0,
d2W1

dz2
+ k2

S (Ma0τ1 + Ma1Sτ0) = 0 at z = 1, (A.11)

d2
τ1

dz2
− k2

Sτ0 +W0 = 0, (A.12)

with τ1 = τW1,
dτ1

dz
= χ

dτW1

dz
at z = 0 and

dτ1

dz
= 0, at z = 1. (A.13)

At first order for fluid 1, they are
d4W11

dz4
− 2k2

S

d2W10

dz2
= 0, (A.14)

with W11 = 0 at z = −dW , (A.15)

and with W11 = 0,
d2W11

dz2
− γT k

2
S (Ma0τ11 − γTMa1Sτ10) = 0 at z = −dW − d, (A.16)

α

(

d2
τ11

dz2
− k2

Sτ10

)

+
W10

K
= 0, (A.17)

with τ11 = τW1,
dτ11

dz
=

χ

K

dτW1

dz
at z = −dW , and

dτ11

dz
= 0, at z = −dW − d. (A.18)

At first order for the wall, it is
d2
τW1

dz2
− k2

SτW0 = 0. (A.19)

Here, too, a solvability condition of two homogeneous algebraic equations is obtained from Eqs. (A.23), (A.28),
and (A.31) of the temperatures in the next order using their corresponding boundary conditions. From them it is pos-
sible to calculateσ0, the lowest-order growth rate. A constant remains undetermined but it simplifies after substitution
of Ma0. Consequently, Ma1S is obtained in the marginal state whenσ0 = 0.
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The equations at the next order are the following. At second order for fluid 2, they are

d4W2

dz4
− 2k2

S

d2W1

dz2
+ k4

SW0 −
σ0

Pr
d2W0

dz2
= 0, (A.20)

with W2 = 0 at z = 0, (A.21)

and with W2 = 0,
d2W2

dz2
+ k2

S (Ma0τ2 + Ma1Sτ1 + Ma2Sτ0) = 0 at z = 1, (A.22)

d2
τ2

dz2
− k2

Sτ1 +W1 − σ0τ0 = 0, (A.23)

with τ2 = τW2,
dτ2

dz
= χ

dτW2

dz
at z = 0, and

dτ2

dz
+ bik4

Sτ0 = 0, at z = 1. (A.24)

At second order for fluid 1, they are

µ

ρ

(

d4W12

dz4
− 2k2

S

d2W11

dz2
+ k4

SW10

)

−
σ0

Pr
d2W10

dz2
= 0, (A.25)

with W12 = 0 at z = −dW , (A.26)

and with W12 = 0,
d2W12

dz2
− γTk

2
S (Ma0τ12 + Ma1Sτ11 + Ma2Sτ10) = 0 at z = −dW − d, (A.27)

α

(

d2
τ12

dz2
− k2

Sτ11

)

+
W11

K
− σ0τ10 = 0, (A.28)

with τ12 = τW2,
dτ12

dz
=

χ

K

dτW2

dz
at z = −dW , (A.29)

and with
dτ12

dz
−

bi1
d
k4
Sτ10 = 0, at z = −dW − d. (A.30)

At second order for the wall, it is
[

χ
/

(

ρW

ρ2

cpW
cp2

)](

d2
τW2

dz2
− k2

SτW1

)

− σ0τW0 = 0, (A.31)

which uses the above boundary conditions. For the third order only the following Eqs. (A.32), (A.34), and (A.36) of
the temperatures are needed along with their boundary conditions.

d2
τ3

dz2
− k2

τ2 +W2 − σ0τ1 − σ1τ0 = 0, (A.32)

with τ3 = τW3,
dτ3

dz
= χ

dτW3

dz
at z = 0, and

dτ3

dz
+ bik4

τ1 = 0 at z = 1, (A.33)

α

(

d2
τ13

dz2
− k2

τ12

)

+
W12

K
− σ0τ11 − σ1τ10 = 0, (A.34)

with τ13 = τW3,
dτ13

dz
=

χ

K

dτW3

dz
at z = −dW ,

and
dτ13

dz
−

bi1
d
k4
τ11 = 0 at z = −dW − d,

(A.35)

[

χ
/

(

ρW

ρ2

cpW
cp2

)](

d2
τW3

dz2
− k2

τW2

)

− σ0τW1 − σ1τW0 = 0. (A.36)

A solvability condition is obtained which is useful to getσ1 assuming thatσ0 = 0. One constant remains un-
determined but it simplifies in the final expression after substitution of the previous Ma0 and Ma1S . In the marginal
stationary state it is assumed thatσ1 = 0, the condition from which Ma2S is calculated.
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