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In this paper the linear stability of two liquid layers with flat free-surface coating of both sides of a wall of finite
thickness and thermal conductivity is investigated under the assumption that the liquid/gas Biot numbers are very
small. It is supposed that gravity is negligible and that the atmospheres at both sides of the system have different
temperatures. These conditions allow for the formation of very large thermocapillary convection cells. Thus, the small
wave-number approximation is done up to fourth order to calculate the marginal Marangoni number. From this result,
the critical Marangoni number (Ma.) and its corresponding wave number (k.) have been calculated numerically. The
wave number corresponding to the maximum growth rate (kmax) is also calculated for a Marangoni number slightly
above criticality. It is shown that, under these conditions, the flow is stationary. It is found that Ma. may have two
magnitudes, one positive and another one negative, depending on the magnitude of some particular parameters of the
problem. 1t is shown that k. may be zero or different from zero with small but finite magnitude. Some parameters
are fixed and the numerical results are presented by means of plots of Mac, ke, and kmax against different important
parameters of the problem.

KEY WORDS: thin liquid film, thermocapillarity, marangoni convection, solid interlayer, small Biot
number, small wave-number approximation

1. INTRODUCTION

Thin films on substrates with different thermal propertiagénbeen investigated for many years. The thermocapillary
problem where the free surface is flat was first investigateBdmarson (1958). In that paper is shown the variation
of the critical Marangoni number and corresponding wave emwith respect to the Biot numbers of the fluid-wall
interface and the fluid-atmosphere interface. The lattealied a free surface because the dynamics of the atmosphere
is neglected in comparison to that of the fluid. In the theriiatangoni problem the condition of a flat free surface
was first relaxed by Scriven and Sternling (1964) assumimgable to deform. When the temperature gradient is
such that the wall temperature is larger than that of the spimere the liquid film is susceptible of instability after
reaching a critical magnitude of the temperature gradiéaivever, it is shown that when the wall is colder than the
atmosphere (heated from above) the film is always stablbelpttesence of gravity natural convection phenomena can
be neglected if the liquid layer is very thin. However, gtavias a stabilizing effect when the surface is deformable,
as shown by Takashima (1981a,b), in the stationary and diependent cases, respectively. The problem of double
diffusive Marangoni convection was investigated for a flaefsurface by McTaggart (1983). Viscoelasticity was
included by Getachew and Rosenblat (1985) for a flat surfeeraperature variation of viscosity is taken into account
by Slavtchev and Ouzounov (1994) and Kalitzova-Kurteva .ef1896) for stationary convection with deformable
free surface and by Slavtchev et al. (1998) for oscillatagvection and deformable free surface. Due to practical
applications, the convenient control of Marangoni coneechas been stressed by Bau (1999), Or et al. (1999), and
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NOMENCLATURE

fluid 2 scaled Biot number

fluid 1 scaled Biot number

fluid 2 free surface-atmosphere
Biot number

fluid 1 free surface-atmosphere
Biot number

fluid 1 heat capacity

fluid 2 heat capacity

wall heat capacity

fluid 1 over fluid 2 thicknesses
ratio

thickness of fluid 2

wall over fluid 2 thicknesses
ratio

d/dz

fluid 1 coefficient of heat transfer
across the free surfaces

fluid 2 coefficient of heat transfer
across the free surfaces
magnitude of the wave-number
vector

critical wave number

wave number of the maximum
growth rate

scaled magnitude of the wave
number

2 component of the wave
number vector

y component of the wave
number vector

fluid 1 thermal conductivities
fluid 2 thermal conductivities
fluid 1 over fluid 2 thermal
conductivities ratio

fluid 2 Marangoni number
critical Marangoni number
scaled Ma’s at different orders
fluid 2 Prandtl number

fluid 2 main temperature profile
fluid 1 main temperature profile
wall main temperature profile
fluid 2 dimensionless temperature
fluid 1 dimensionless temperature

Wi

Greek Symbols
X1

&2

xw

(0.4

Y
YT

H1
M2
Vi1
A

P1
P2

Pw
by

Op, 01

fluid 2 temperature

fluid 1 temperature

temperature of atmosphere below
fluid 1

temperature of atmosphere above
fluid 2

wall dimensionless temperature
wall temperature

atmosphere temperature
difference

fluid 2 third component of velocity
fluid 1 third component of velocity
fluid 2 amplitude of third
component of velocity

fluid 1 amplitude of third
component of velocity

fluid 1 thermal diffusivity

fluid 2 thermal diffusivity

wall thermal diffusivity

fluid 1 over fluid 2 thermal
diffusivities ratio

surface tension

fluid 1 over fluid 2 ratio of surface
tension derivatives with respect
to temperature

expansion parameter

fluid 1 over fluid 2 dynamic
viscosities ratio

fluid 1 dynamic viscosity

fluid 2 dynamic viscosity

fluid 1 kinematic viscosity

fluid 2 kinematic viscosity

fluid 1 over fluid 2 densities
ratio

fluid 1 density

fluid 2 density

wall density

real part: growth rate; negative
imaginary part: frequency

real part oft growth rate
scaledo’s at different orders
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NOMENCLATURE (continued)

T  fluid 2 temperature amplitude Ty  wall temperature amplitude
T, fluid 1 temperature amplitude X wall over fluid 2 thermal diffusivities ratio

Kechil and Hashim (2009). The problem in a cylindrical gettmevas investigated by Davalos-Orozco and You
(2000) and for a viscoelastic fluid by Moctezuma-Sanchezl@évalos-Orozco (2015).

More realistic conditions for thermocapillary instabjliare taken into account when the solid boundary is as-
sumed to have finite thickness and thermal conductivitysé&lege considered by Takashima (1970), by Yang (1992)
with buoyancy effects, and by Char and Chen (1999) for teatpez-dependent viscosity. Besides, a nonuniform
temperature gradient is assumed by Gangadharaiah (20d3jiscoelastic effects are introduced by Hernandez-
Hernandez and Davalos-Orozco (2015). For the case aflliijms falling down walls see Davalos-Orozco (2012,
2014, 2015, 2016).

It is of interest that Catton and Lienhard (1984) and Liedraard Catton (1986) investigated the natural convec-
tion of a system with two liquid layers separated by a soltddiayer. They found that there are conditions where one
of the liquid layers stays in a hydrostatic situation whemather one shows natural convection instability. However,
under other conditions both layers can be unstable, depgiliparticular on the thickness and conductivity of the
solid interlayer.

It is the goal of the present paper to investigate the linearmocapillary interaction of two thin liquid layers
coating both sides of a solid interlayer in the absence ofityrtaAs can be seen in the author’s references reviewed
above, it has been of interest for some years to take intouattbe presence of a thick wall to obtain results closer
to experimental conditions (see in particular Hernanderrandez and Déavalos-Orozco, 2015). However, also of
concern is the presence of another liquid layer located emther side of the wall (due, for example, to the coating
of both sides of a solid plate, for instance, by dip-coatingwe to condensation). The influence of this extra liquid
layer on the thermocapillary stability of the whole systesthie new subject of this paper. The system is subjected to
a temperature gradient due to the temperature differerteesba the atmospheres present outside the free surface of
each of the two fluid layers. Systems with two free surfaces h&en investigated in the past. For example, Oron et
al. (1995a,b) investigated the thermocapillary instabdf a liquid sheet under a temperature gradient with a fldt an
a deformable surface, respectively. Davalos-Orozco (L8&i@ulated the thermocapillary instability of a liquidest
in motion with deformable free surfaces. This instabilipstalso been investigated by Fu et al. (2013) and by Tong
et al. (2014) for a viscoelastic fluid. The case when the tidayer is coating a deformable membrane is discussed in
Davalos-Orozco (2001).

An assumption in the present paper is that the free surfaeeflad as done by Pearson (1958) and that the
corresponding Biot numbers are very small. The first assiompggn be satisfied by fluids with a very large surface
tension number defined as Syzd;/p1vic, wherey; is the surface tensiom is the thickness of the layep; is
the densityyv; is the kinematic viscosity, and; is the thermal diffusivity, all of fluid 1. Liquids like silan oils have
a very large S (see Al-Sibai et al., 2002). For example, witlF 0.0187 kg/se p; = 870 kg/n¥, v1 = 2.1609x
10-% m?/sec,x; = 2.1609x 10~ m?/sec with Prandtl number = 10 and for a liquid layer thicknéss 0.001 m, S =
4.60304x 10*. The possibility of small Biot numbers is demonstrated ifb#ea and Kuznetsov (2002) and Kabova
et al. (2006) from experimental data. This last assumptfff@ees Marangoni convection in such a way that convection
cells are very large, as calculated by Pearson (1958), vihen@ave number tends to zero. The small wave-number
approximation has been applied in natural convection byieHetral. (1967); Chapman and Proctor (1980); Proctor
(1981); Davalos (1984); Davalos and Manero (1986); amet2Reyes and Davalos-Orozco (2014).

Natural convection in a two-layer system has been invesiibhy Nepomnyashchy and Simanovskii (1983,
1984, 1985, 1986). See a complete review in Nepomnyashdcily @012). However, particular attention is given to
the work on natural convection for a two-fluid system with &fflee surface and a flat fluid-fluid interface investigated
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by Gershuni and Zhukhovitskii (1986). The reason is thagétauthors use a small Biot number approximation in the
problem. Some characteristics of their results are sinvlénose obtained in this paper for Marangoni convection, as
will be shown presently. Notice that the small Biot and wanenber approximation was also used for thermocapillary
convection in a liquid sheet with flat surfaces by Oron etE996a).

Here the small wave-number approximation is applied up twtfoorder in the wave-number expansion of the
variables. This is a new procedure under this approximalios important to point out that the expansion is usually
done up to second order in the wave-number expansion. Thégodoe able to capture the minimum of the marginal
Marangoni numbers (that is, the critical Marangoni numbegMwith critical wave number k of both zero and
finite magnitude. Besides, it is of interest to calculatewlage number of the maximum growth ratg.k in regions
where the critical wave number is zero and different fronozlotice that by definition, the marginal curves and in
particular the critical point occur when the growth ratelod perturbations is zero. A slight increase from critigalit
of the Marangoni number leads to a temporal growth of theupleations. As will be seen presently, the number of
parameters is very large and therefore some of them will leeifiA variety of plots of Mg, k¢, andk,,.. against
some parameters of the problem are presented in order tostadé the behavior of this complex system.

The paper is organized as follows. The next section presleatsescription of the system and the corresponding
equations of motion and heat transfer of the two fluids andstiiel interlayer. The numerical results are given in
Section 3. Section 4 presents the conclusions.

2. EQUATIONS OF MOTION

The goal of this paper is to investigate the thermocapikaapility of a system composed of two liquid layers coating
both sides of a solid wall in the absence of gravity. The wall §iquid layers extend to infinity in the horizontal
directions. The free surfaces are assumed to be flat andatidcis are done in the same way as Pearson (1958). This
system is sketched in nondimensional form in Fig. 1 wherd fthas thickness 1 and fluid 1 has thicknésBhe walll

has thicknessgy, . The dashed lines are the free surfaces of each fluid andtbeyxposed to the ambient atmospheres
which have different temperatures. In the figure, the atrespbelow fluid 1 is hotter than that above fluid 2, but the
contrary may also be possible because gravity is not présénis problem. This situation can produce Marangoni
instability in one of the two layers after a large enough terafure difference is reached between the atmospheres.
However, the perturbations of the unstable liquid layerinflnence the stable one due to the thermal interaction they
have through the thick wall.

The system of equations corresponds to the equations obmofi the two fluids and the equations of heat
transfer of the wall and the two fluids, all of them with theoresponding boundary conditions. They are made
nondimensional as follows. The distance is measureddyithe thickness of fluid 2; time with3/«,, wherex;, is the
thermal diffusivity of fluid 2; velocity witho,/d,; and pressure with, oo vo/d3, wherev, is the kinematic viscosity

o Yoe | Ammosphere
0.84
0.6
Fluid 2
0.4
0.2

0

L2 A e X o
S0 e

% Fluid 1 d

08—
Hot Atmosphere

FIG. 1: Sketch of the system in nondimensional form. Two fluid layerating both sides of a solid interlayer in the absence of
gravity. The free surfaces are assumed flat and with diffeeznperature
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Two Liquid Layers Coating Both Sides of a Thick Wall 63

of fluid 2. The temperature is scaled Wil = (T, —Tyy)/den, whereTy, is the temperature of the atmosphere below
fluid 1 andTy; is the temperature of the atmosphere above fluid 2. The deraoniis defined as
d d

den:E+7W+1. (1)
__Here,d = dild,, whered; andd, are the thicknesses of fluid 1 and fluid 2, respectivéjy. = dy/d», where
dw is the thickness of the walK = K,/K,, whereK; and K, are the thermal conductivities of fluid 1 and fluid 2,
respectivelyy = Kw /K>, whereKyy is the thermal conductivity of the wall.

The nondimensional equations of motion, heat transfercantinuity of fluid 2 are

-2 _ 2
S5 = -VP+V v, @)
v.-V=o, 4)

Where7 is the velocity vectorpP is the pressurd = den (I —Ty)/(T, —Ty) is the temperaturd, is the dimensional

temperature, and/dt = 9/0t + 7 - V is the Lagrange operator of fluid 2. The Prandtl number is ddfes Pr =
V2/O(2.
The equations of fluid 1 are

147, 1 Moo

Pr dr __EVP1+EV 71a (5)
dt (Xv 1 ( )
V.V, =0, (7)

Whereﬁ is the velocity vectorP; is the pressurely = den (Ih — Ty)I(Ty, — Ty) is the temperatur€el} is the

dimensional temperature of fluid 1, add/dt = /0t + V1 - V is the Lagrange operator of fluid i.is the ratio

w1/ w2, wherey; is the dynamic viscosity of fluid 1 ang= p1/p,, wherep, is the density of fluid 1. The ratia =
o1/, Wherea; is the thermal diffusivity of fluid 1, can also be written as

o K
p(cpi/cp2)’

The heat capacities of fluid 1, fluid 2, and the wall afq, cp,, and cpy,, respectively. The heat diffusion
equation of the wall is

oTw  « —
W WA, (8)
ot o2
HereTy = den (Tw — Ty)I(Tr, — Ty ) is the wall temperatureyyy is the wall thermal diffusivity, andyy is the
dimensional temperature of the wall. The ratio of diffus@s can also be expressed as

w

()
2 p2 cp2 )’
wherepyy is the density of the wall.

The main temperature profiles (defined without bars) of tlstesy are calculated under hydrostatic conditions.
Their boundary conditions (see Fig. 1) in nondimensionahfare the following.

T=0 at z=1 9)
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= dT dTyw

T=Tw and — =y W oat z=0 (10)

dz dz

= x dTw _ dTh _
Tw =11 and K do  d» at z=—dw (11)
Ti=den at z=—dy —d (12)
The nondimensional solutions of the main temperatures wof #8uthe wall, and fluid 1 are, respectively,

T(z)=1-z, (13)
Tw(z)=1- 5, (14)

X

1

Ti(z) = den — E(z +dw +d). (15)

To calculate the linear equations satisfied by the fluid \igéscperturbations, the equations of motion of fluid 1
and fluid 2 are operated twice by the rotational operator @’ x). Now, the linear heat diffusion equations only
contain the vertical component of velocity of the corregting fluid 1 or 2 (see below). Therefore, it is found that
only the third components of the equations obtained fronmdtegional operations are coupled to their corresponding
thermal diffusion equation. Those components only contfaénthird component of velocity. Thug; andw, are
defined as the third components of the velocity perturbatmfifluid 2 and fluid 1, respectively. Moreover, use is
made of normal modes for the velocities and temperaturesidffl, fluid 2, and the walll. In this case (w1, T, Ty,
T1) have the form ¥, W1, T, tw, T1) expli(k.x + kyy) + St], where ¢V, Wy, T, Tw, T1) only depend on: and
represent the amplitudes of the velocity and temperatutteif@tions. The meaning of these normal modes is that
the infinite plane is filled with tessellated horizontal stures. The: = Re®) + ¢ Im(X) is a complex number whose
real part ReX) is the growth rate and its imaginary part I)(is the frequency of oscillatiork, andk, are thex
andy components of the wave-number vector. In normal modes tpéatin operator changes int? — D? — k?
and the time partial derivative in@/dt — ¥, where the definition® = d/dz andk? = k2 + k3 are used. In what
follows, the magnitude of the wave number is scaled askg, wherekg is the order one scaled wave number and
¢ is the expansion parameter which satistiesc 1. The calculations presented below were also done induitie
frequency of oscillation InX)) [in the marginal state with R&)) = 0] and it was found that the frequency needed to
make zero the imaginary part of the marginal Marangoni nuritbeero. Therefore, in order to calculate the most
dangerous mode of instability, it is assumed that in notlasaiy convection, the growth rate is scaled asXRef o
= ¢ (0p + £201).

In this way, by use of the main temperature profiles the lipesturbation equations for fluid 2 are

Pirg“(oo + ¢%01) (D2 — e2k2) W — (D? — e2k2)°W =0, (16)
e*(o0 + o)t — W = (D* — %k3) T, (17)

for fluid 1, L
S:et(00 + €201) (D? — €2k%) Wa — % (D? = e2k3) W, = 0, (18)

1
e*(00 + €%01)T1 — =W = (D? — €%k%) T4, (19)
and for the wall,
e*(0g + e201) Ty = O;—W (D? — e%k%) Tw. (20)
2

Next, we address the boundary conditions for the velocitiesthe temperatures. The free surfaces are assumed
flat and the components of the velocities of fluid 1 and fluid ébpedicular to the surface have to be zero.

Dt=-Bit, W=0, D?W=-Mae?k3t at z=1, (21)
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T=1tw, Dt=xDty, W=0, DW=0 at z=0, (22)

Tw = T1, %DTW =Dty, W1=0, DW;=0 at z=—dyw, (23)
Bi

Dty = #q, Wy=0, D?W,=vyrMae2kit, at z= —dy — d. (24)

Bi = Hj,2d,/ K, and By = Hy,1d1/ K, are the Biot numbers of fluid 2 and fluid 1, respectively; ldnd H,; are the
coefficients of heat transfer across the free surfaces af2laind fluid 1, respectively. Notice that;Bi = Hj,1do/ K.
The Marangoni number is defined as

dy AT dp

Ma= Y28
dT den povoxy’

(25)

wherey is the surface tension of fluid 2 antl/dT < O is the derivative of that surface tension with respect to
temperature which is negative for most fluigls. = (dy1/dT)/(dy/dT) is the ratio of the derivative of surface tension
with respect to temperature of fluid 1 over that of fluid 2.

Here it is assumed that the Biot numbers are very small. énddise, very large scale convection cells are formed
and the flow is very slow (see Pearson, 1958). Therefore, #ve wumber is very small, too, and it will be used as
an expansion parameter, in the foes < 1 with kg order one. In this way, the Biot numbers are scaled as Bi =
k% biand Bi, = ¢*k% biy, where bi and hiare of order one.

Itis of interest here to calculate Ma corresponding to theginal state of the system where the real partRe{

0 =0, thatis, zero growth rate. Itis also of interest to calteithe wave numbét,, ., corresponding to the maximum
growth rate when the Marangoni number is slightly above theginal state and > 0. Recall that the calculations
presented below were done with IB)([and Ref) = 0] and it was found that the frequency needed to make zero th
imaginary part of the marginal Marangoni number is zero.tThiaunder the present approximation in the marginal
state,X should always be zero and the flow is stationary.

In the equations and boundary conditions the exponent ofvinee numberk is always even. Therefore the
following expansion of the variables is made, taking intocamt that the flow motion is slow.

W =e2Wo+ e Wi+ eWot - t=m1o+en+ett+---, (26)
Wi = Wi+ e Wi+ Wi+ -+ 11 =Tio+ 2+ ¥t + -+, (27)
Tw = Two + €2Twr + e*twa + -+ Ma= Mag + e’Mayg + ¢*Mapg + - - - . (28)

The marginal Marangoni number is calculated up to fourtreoid k& using the Maple algebra package. This
allows us to find a critical Marangoni number with a corregtiog finite critical wave number when the Biot num-
bers are very small but different from zero. There are alsalitions under whictks can be zero. This means that
the convection cell is very large and will fill the whole liguliayers. The algebraic calculations are very long, com-
plex, and tedious and will not be presented here. The praeddwsimilar to that found in the literature for natural
convection (Hurle et al., 1967; Chapman and Proctor, 1988;tBr, 1981; Davalos-Orozco, 1984; Davalos-Orozco
and Manero, 1986; Gershuni and Zhukhovitskii, 1986; R&eyes and Davalos-Orozco, 2014) and for a liquid sheet
with flat free surfaces (Oron et al., 1995a). It will be showesently that the scaled Ma= k% Ma; and the scaled
Mags = k¢ Mayp. Thus, using the identity = ¢kg, the calculated marginal Marangoni number has the form

Ma = Mag + k*May + k*May. (29)

The coefficients M@ Ma; 5, and Mag were obtained from the first, second, and third solvabildgditions, respec-
tively (see the Appendix). Here,

 48a(xdw + dK + 1)

M
% X — dg]/T

; (30)
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and

16 x
= B [~ By [K 2Xd®v% — 3YKY% (xdw + 1) d° — 9xv% (xdw + 1)* d® — 5Kyr [dwyr

x (x2d%y, + 3xdw + 3) + x (Ko + vz (1 —3bi)) |d" — 15K xyr [ (xdw + 1) — Kbiryr]d°

— 15K %oy [dw®x + X + 2dw | d® — 5aK x [dwyr (xd5y + 3dw + 3x) + (Ko + (14 6bi)yr)|d* (31)
— 3aK?[5aKdw + (30K + 10biyr) x]d® — 30®k?x [5d%, + 6xdw + 1]d?

Ma,

— Kxo?[5xKd3, + 9x2d%, + 3ydyw — 15bi— 1]d + 15K2Xbi1oc2} .

The number of terms in Mads very large and will not be presented here. Thesg &M@ Ma show a characteristic
common to Ma. That is, the denominater — ¢®y,. The marginal Marangoni number can be written as
Mag 5 May May

Ma =
o —d3yp * (x — d3yr)3 - (¢ — d3yr)®

ke, (32)

whereMag, Ma;, andMa, are the Marangoni coefficients without their correspondiagominators. It is interesting
that this denominator is similar to that found by Gershurd Zhukhovitskii (1986) in natural convection with an
interface and a free surface in a stratified two-layer systedepends on the fluid properties and fluid layer’s relative
thicknesses. Notice here that the powers of the denomater odd. This brings about the possibility of having
negative marginal and critical Marangoni numbers whenmpiting to the magnitudes of the parameters involved, the
sign ofx — d®y7 is changed.

The minimum of Eq. (29) is calculated taking the derivativithwespect td:. A third-order algebraic equation is
obtained fork. Two non-negative critical wave numbers are possitder 0 andkzc = — Ma;/2 Ma,. Substitution of
kc in Eq. (29) gives the critical Marangoni number Ma May — Ma2/4 Ma, (for ko > 0) and Ma: = Ma (for k¢
= 0). In the lastkc the sign ofx — d>y7 has no effect because the ratio las— d*y7)? in the resulting numerator.
In casek is imaginary then the the critical wave numbekis= 0. Thus it can be shown thag = 0 corresponds to
a maximum of Ma when Ma< 0 and to a minimum when Ma> 0. The contrary occurs whés > 0. In this case,
ke corresponds to a maximum of Ma when Ma 0 and to a minimum when Ma< 0.

The critical Marangoni number and the corresponding @iititave number are calculated numerically as fol-
lows. First, all the parameters except one are fixed and eaghW&,, and Ma are evaluated varying the parameter
left. In this way, it is possible to present the plots of Mandk in the figures of the next section.

The possibility ofk = 0 is found immediately in a particular case where the théslsnof fluid 1 and the heat
conductivity of the wall tend to zero (fluid 1 does not exi$f)at is, wheni — 0 andy — 0 in Ma, to get Ma = 48.
This value was first obtained by Pearson (1958) in the lim#&mhoth Biot numbers and the wave number tend to zero.

The physical meaning of a critical wave numlier= 0 is that one convection cell is extremely large and can fill
the whole liquid layer. In this case, the marginal curve of ha the form of a parabola with respecttahich has
its vertex (its minimum) located @t= 0.

When the system is slightly above the marginal state, thdiardp of the unstable convection cells grows with
time. As explained above this growth is represented by theirratec = ¢* (o9 + £201). The second term®o; is
extremely large and will not be presented here. Thus, omithkt one is given below.

hoo = (1/48) { [k (e — dyr) e2Maus] /A + o+ (pw /p2) (cpw/cpa)durod }

_ {(k“a) / [15de (dK ot ‘;—V: C;VZV dch) (o — d3yT)2] } [KZXdl"y% — 3yKv2 (xdw + 1)

x d° — x4 (xdw + 1)%d® — BKyr [dwyr (xd3, + 3xdw + 3) + x (Ko +yr (1— 3bi))]d’ (33)
— 15K xyr % [a(xdw + 1) — Kbiryr]d® — 15K 20y [dw?x + x + 2dw | d® — SaK x [dwy

x (xdSy + 3dw + 3x) + (Ko + (14 6bi)yr) |d* — 3aK?[5aK dw + (3K + 10biyr) x]d®

— 30k?x [B5d3y, + 6xdw + 1]d? — Kxo?[5xKdy, + 9x?dy, + 3xdw — 15bi— 1]d + 15K2Xbi1a2] .
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This equation may be expressed as

A
£40_0 _ 1/ dK + o + p_WCp_WdWo( 712151 + B1 (oc - ds’yT) kzﬁzMals s (34)
P2 cp2 (. — d3yr)

whereA; and B; depend on the parameters of the problem but ngt and Mas. In this case, the small magnitude
of e2May5 has to be given to be slightly above the critical Mat is important to note that*cg is useful only to
describe the growth rate in the region where the criticalevawmber iskc = 0. Thee®o; is useful for the growth
rate whenks > 0 as will be seen presently. It has the form

A
o, [1 / (dK +a+p_wcp_wdwa)] 22 454 By (a— dPyr) KeMags |, (35)
P2 Cp2 (ot — d3yr)

whereA, and B, depend on the parameters of problem but nat amd Mag. In the following section the graphs of
¢%0p ande®o, are not presented. Instead, the graphs of the most dangaomiesare presented fby, ... The formula
of knax from Eq. (34) is valid wherk = 0 has the form

1/2
By (o — d®yr)® e2Ma
Komax = (— - dyr) e 15) . (36)

241

It is useful when the radicand is positive. The formulagf,. from Eq. (35) is valid whert- > 0 has the form

1/4
T By (o — dsYT)S e*Mayg (37)
max — 3A2 .

Again, it is useful when the radicand is positive. Obsenat tioth growth rates require the wall over fluid 2
densities and heat capacities ratigs/p, andcpw /cp,, respectively. However, the term containing them simpifie
when calculating botl,,.,’s of Egs. (36) and (37), which are required below to desdtilgemost unstable mode of
instability. That term also simplifies when calculating Mand Mas. Results of the numerical analysis of Ma in
Eq. (29) are presented in the following section along withsthof Eq. (37) [and Eq. (36) when needed].

3. NUMERICAL RESULTS OF Ma IN EQ. (29)

In this section numerical results of Eq. (29) for the marenad critical Marangoni number are calculated. The
number of parameters is very large and some of them will be tizeinderstand in an easier way the behavior of the
critical Marangoni number under different conditions sEit will be assumed that both fluids and their corresponding
atmospheres are the same. In that case, it is clear that bibi. Under this assumption the following parameters
result, fixed through the papes:= K = « = y7 = 1. In other words, the fluid densities, heat conductivjthesat
diffusivities, and temperature derivatives of surfacesten are all the same.

The variable parametexs bi, dy-, andd correspond to the wall-fluid heat conductivities ratio, Biet number of
fluid 2, the relative thickness of the wall, and the relathieltness of fluid 1, respectively. Under these assumptions,
the term in the denominators of Eq. (32) becomesd. It only depends on the relative thickness of fluid 1.

In particular, it is important to distinguish between theuks ford smaller than 1 (thickness of fluid 2 larger than
that of fluid 1) from those fod larger than 1 (thickness of fluid 2 thinner than that of fluid TWyo separate graphs
are given for these two cases.

Two samples of marginal curves are shown in Fig. 2. In Fig) ®@parameters ase= 0.1,dyy =1,d =0.1< 1,
and the marginal Marangoni number is positive. Here, areame of the Biot number, that is, the increase of the heat
transfer across the free surface of fluid 2 changes the nargimves in such a way that their minima, the critical
points, move up and to the left and the critical wave numbedgdo zero. In Fig. 2(b) the parameters are bi = 0.1,
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FIG. 2: Two sample figures with different types of marginal curveg;Nla vsk (x =0.1,dw =1,d=0.1< 1), bi=(1) O, (2)
0.01, (3) 0.03, (4) 0.05, (5) 0.1, (6) 0.15, (7) 0.2; (b) Makywmegative Marangoni number (bi =0t~ 0.1,d =2 > 1),dw = (1)
0.001, (2) 0.01, (3) 0.05,(4) 0.1,(5)0.5,(6) 1, (7) 2

x = 0.1,d = 2 > 1. The marginal Marangoni number is negative. A charadiers the minima of the curves (the
points closer to thé axis) is that the change of the critical wave number is notaamic with respect to an increase
of dyy, the relative thickness of the wall.

Notice that the wave number of the minima of the marginal eatigk < 0.5 and that the Biot numbers are order
one or less. Care is taken through the paper to satisfy tivesednditions.

Now, the goal is to know the magnitude of the critical Maramgaumber Ma;, the corresponding critical wave
numberkc, andk,,.x, the wave number corresponding to the maximum growth rats{ielangerous mode). These
are shown against the scaled Biot numberyfer 0.1, the relative heat conductivity of the wall, ashgt = 1, a wall
thickness equal to that of fluid 2, in Fig. 3. Mas presented in Fig. 3(a) against bi for different magnitidéd <
1, the relative thickness of fluid 1. The increase ofMaith bi is monotonic up to a magnitude where it becomes
constant. This can be explained in Fig. 3(b) where it is fothat at that particular bi and over, the critical wave
number becomes zero. Notice thatkat = 0, Ma in Eq. (29) always has the same magnitudeg,Mar the given
parameters. The physical meaning is that the increase bfraeafer across the free surfaces is stabilizing only up to
a magnitude where its effect is not important.

In contrast, as explained above, when the relative thickoéfluid 1,d — 0, the decrease of bi leadstg —

0 if alsoy — 0. This can be seen in the following asymptotic formula foainid where the relative thickness of the
wall is dyy = 1:

Ma = 48(1+ x) + 1—56 (14 30bi— 8x — 9x?) k?

16 5. 420bi(1 + x) + 124y + 310¢* + 189°) k* (38)

178!
+ |48— 2—28 (1+x) k> + 11—765 <474 1050bi 420Dbi+ 1040y + 567X2> k4] d.
X

In this case forly, = 1, the square of the critical wave number has the expression

2 _ 35y (1 + 30bi— 9x? — 8y — 18dy — 18d)
= (840x (x + 1+ d) +210Q1) bi — xQ2 '

(39)
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FIG. 3: x =0.1,dw = 1; (&) Ma vs bi; (b) k¢ vs bi; and (c) most dangerous moflg.x vs bi, solid whenk- > 0 (for
£*Mays = 0.1) and dashed whel = 0 (for e2Mays = 0.1); d = (1) 0.1, (2) 0.2, (3) 0.3, (4) 0.4

whereQ = [378y3 + (620+ 11341)x? + (248+ 208Q1)x + 6 + 94&1|. When bi = 0 oney simplifies and the de-
nominator ofk2 is negative. A condition for positivé?, is that the numerator be negative /. is negative the
critical wave number can only be zero. Therefore, in orddraeek = 0, the numerator should be positive and one
of the roots gives the condition & y < 1/9 — 2d. This means that it is still possible to hakg = 0 when the
relative conductivity of the walk is small but different from zero. Remember tas assumed small in the formula.
The case when b 0 is a little more complex. It is interesting that under thisiaion the root corresponding to
the previous case when bi = 0 does not give the needed camilitid:c = 0. Then, the other root of the numerator
corresponding to positivg now has the formy, = —d — 4/9 — (1/9)[(9d — 5)? + 270bi*/2. The condition for
kc = 0 is that positive y root of the denominator of k2) < x < x.. In this regionk? is always negative due to
its denominator. Now, considering thgtis of the same order a$ and that they tend to zero simultaneously, an
expression for Ma is obtained containing bi d@ndlone. Under this assumption the critical wave number isugbv
ke = 0. The extrema obtained fér correspond to maxima (not minima) of Ma which, by the way, @utside the
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small wave-number approximation. This example for smatinly shows a facet of the whole complexity of the

problem.

The curves of,,., the most dangerous mode, are presented in Fig. 3(c). Tiddisek [Eq. (37) withe*Mayg =
0.1] and the dashed lines [Eq. (36) withMa; s = 0.1] correspond té- > 0 andk¢ = 0 [see Fig. 3(b)], respectively.
Itis clear that a singularity occurs in both of thg., at the bi wheré: drops to zero in Fig. 3(c).

Figure 4 presents results fdr> 1. The thickness of fluid 1 is larger than that of fluid 2. In thése Ma is
negative [see explanation of Fig. 2(b)]. The physical megis that the system is unstable only when the temperature
of the atmosphere outside fluid 2 is larger than that of theogprere outside fluid 1. The fixed parameters are the
relative conductivity of the wal = 0.1 and relative thickness of the wall, = 1. Graphs of the critical Marangoni
number against the scaled Biot number are shown in Fig. Z(e.curves for differend only vary slightly in the
range of bi which has to be of order one. Therefore in this taséncrease of heat transfer across the free surface
is almost negligible. However, the influence that the reéathickness of fluid 1 has on the stability is clear. Plots of
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FIG. 4: x = 0.1,dw = 1; negative Ma; (a) Mac vs bi; (b) k¢ vs bi; and (c) most dangerous mokg.. vs bi (for e*Mayg =

—0.1);d=(1)15,(2) 2, (3) 3, (4) 4
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ke vs bi are given in Fig. 4(b). Notice that the curve correspogdo d = 4 is below that of = 3 and that it has
a tendency to cross below the curvedof 2. Figure 4(c) shows that the wave number of the most dangermde
increases slowly but monotonically with bi. Notice in Eq7)3hat heres*Mayg is negative. However, the sign is
corrected with - d® which is also negative faf > 1.

Graphs of Ma, k¢, andk,,., againsty (the relative heat conductivity of the wall) for bi = 0.4y, = 1 are
plotted in Fig. 5. Here again the magnitudedois smaller than 1. At first sight, the growth of Mawith respect to
X IS monotonous in Fig. 5(a). However, it is not the caseyfer 0.1 andd = 0.2, wherey has a destabilizing effect.
Except for this case, the figure shows that the increase atthive conductivity of the wall stabilizes.

The behavior of the curves & vs x is different as can be seen in Fig. 5(b). Each curve has a nugxi(im some
cases the maxima are abadve 0.5) after which the curves decrease. The physical meanfitlas maximum is that
the convection cells at criticality can have a minimum siepresented by their wavelength, for a certain magnitude
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FIG. 5: bi=0.1,dw = 1; (a) Ma: vs x; (b) k¢ vs x; and (c) most dangerous mo#lg.. vs x (for ¢*Mays = 0.1);d = (1) 0.1,
(2)0.2,(3)0.3,(4)0.4
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of x. Notice the peculiar behavior of the curve corresponding 400.1. It is interesting in Fig. 5(c) that the curves
of kLax have maxima, too, with respect 19 as occurs wittk, but at different magnitudes gf.

When the relative thickness of fluiddlis larger than 1, the Marangoni number is negative as showigiré. In
Fig. 6(a) for Ma it is observed thak also has a stabilizing effect. It is more stabilizing for 1.5. In other words,
the stability is enhanced decreasing the relative thickné&fluid 1 wheny increases. The graphs of the critical wave
number are presented in two parts due to the peculiar bahaiioe curves. In Fig. 6(b) only the range<0y < 0.05
is presented to understand how the curve ef3 crosses that af = 4. Figure 6(c) shows how for larggrthe curve
of d = 2 crosses those df= 4 andd = 3 to become the larger critical wave number in a wide range &ach curve

shows a maximum which corresponds to the smallest cell $ize.wave number corresponding to the maximum

growth rate is plotted in Fig. 6(d). Each curve shows one mari but, in contrast to the curves kf in Fig. 6(c),

the curves do not intersect each other.
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FIG. 6: bi = 0.1,dw = 1; negative Ma;; (a) Mac vs x; (b) kc vs x, 0 < x < 0.05; (c)kc vs x, 0 < x < 4; and (d) most
dangerous modky. vs dy (for e*Mays = —0.1);d = (1) 1.5, (2) 2, (3) 3, (4) 4
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Figure 7 presents the variation of Mandk against the relative thickness of the waéj for bi = 0.1 andy =
0.1. In Fig. 7(a) clearly, the behavior of Mads not monotonous fady, < 1. It is destabilizing in some places of the
range showing a minimum in each curve. For larggrthe growth of M& is monotonous. Notice that the increase
of d, the relative thickness of fluid 1 is stabilizing. The copesding graphs ok are shown in Fig. 7(b). Here,
each curve presents a maximum and has a fast decrease tohmdyy is finite but very small. Observe that in the
picture the curves do not reach the horizontal axis, butdhtfeey should go directly to a zero critical wave number.
The graphs ok, are given in Fig. 7(c). There, the dashed curves correspotitketregion wheré- = 0 and the
solid ones correspond to the region whige> 0. Notice that the solid curve 4 far= 0.4 nearly touches the vertical
axis.

The results forl > 1 are presented in Fig. 8 for negative Mal he thickness of fluid 1 is larger than that of fluid
2. As can be seen, the increaselgf has a stabilizing effect which is enhanced by the decreageAs shown, Ma
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FIG. 7: bi = 0.1,x = 0.1; (@) Ma vsdw; (b) kc vs dw; and (c) most dangerous mo#lg .x Vs dw, solid whenks > 0 (for
£*Mays = 0.1) and dashed whei; = 0 (for e2Mays = 0.1);d = (1) 0.1, (2) 0.2, (3) 0.3, (4) 0.4
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has a very small variation fef = 3 andd = 4, in contrast to curve$ = 1.5 andd = 2. In Fig. 8(b) fork¢ it is notable

that the curves cross each other. Besides, thdto#t becomes the larger one whép- increases. Physically, the
convection cells of the smallest size correspond to thikth# curves touch the vertical axis even though the curve
of d = 4 presents a maximum. Consequently,has a finite value whedy, = 0. Plots ofk,,., VS dy are given in

Fig. 8(c). Observe that all the curves have a finite valug;at 0 where each one has a maximum and that they show
a monotonic decrease withy .

4. CONCLUSIONS

The thermocapillary stability of two fluid layers coatingtbaides of a thick wall with finite thermal conductivity
has been investigated. It is assumed that the free surfaeaotf fluid is flat as done by Pearson (1958). Due to
the large number of parameters it is supposed that the twadliayers are made of the same fluid and that their
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FIG. 8: bi = 0.1, x = 0.1; negative Ma; (a) Mac vs dw; (b) kc Vs dw; and (c) most dangerous modg.ax Vs dw (for
e*Mays = —0.1);d=(1) 1.5, (2) 2, (3) 3, (4) 4
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corresponding atmospheres are also the same but at dtfteraperatures. This reduces the number of parameters
to a few. Nevertheless, a large variety of phenomena aredfolmo possibilities of instability are found. One for
a positive critical Marangoni number and another one for gatiee one. The negative Mameans that now the
instability is possible when the atmosphere next to fluid doisler than that next to fluid 2. The former is possible
when the relative thicknessof fluid 1 isd < 1. The latter corresponds tb> 1. The interaction of the two fluids’
instabilities leads to interesting results. It is foundtte d < 1 an increase of the Biot number of fluid 2, bi, gives
the possibility of having:c = 0 after a definite magnitude influenced dyAfter this magnitude of bi, Ma remains
constant because the term Ma Eq. (29) is independent of bi. However, analytical coiodisé have been calculated
that lead tokc = 0 when bi is small in a formula obtained asymptotically foradl d anddy, = 1. It is interesting
that these conditions make this possible even whénsmall but different from zero. The result may be due to the
important influence of the finite relative thickness of thdlwié, , as shown in other problems published in previous
papers (Hernandez-Hernandez and Davalos-Orozco,; P@Malos-Orozco, 2012, 2014, 2015, 2016).

When the magnitude of¢ is zero and different from zero the curvesigf,, have to be calculated by two
different formulas, Eqgs. (36) and (37), respectively. Eeghation has a singularity at the bi whége drops to zero.
Whend > 1, Ma¢ is negative and,,, .. increases monotonically.

The variation ofy, the relative wall thermal conductivity, has a stabilizeféect. However, for small magnitudes
of x and particular values af, the behavior of Mg is not monotonic and shows a small depression (more ingtgbil
The graphs of¢ present a maximum for every magnitudedofbut it tends to zero wheg tends to zero. If] >
1 the growth of the magnitude of the negative Mg monotonic withy. However, the growth ok is interesting
because the curves cross each other increasamy the curve that attains the larger critical wave numbirasofd
= 2, located in the middle range dfinvestigated. It is noteworthy that the curvesigf,. have a maximum for both
positive and negative Ma

The relative thickness of the wall also has an interestifecebn Ma:; which here, too, has a small depression
(destabilizing effect) when & dy, < 2. For larger values afy, the system is stabilized monotonically. The critical
wave number also has a maximum for each magnitudg bfit nowkc drops to zero for small enough magnitudes
of dyw. Whend > 1, ko has maximum only for some magnitudesipbut, in contrastkc has a finite value whedy
= 0. In this case, tod;,., has to be calculated with Eq. (36) whea = 0 and with Eq. (37) wheks > 0. However,
for Mac < 0, kmax has a monotonic decrease witfy .

In this paper, the complexity of this particular two-fluidsggm has been reviewed in the form of graphs where
a variety of parameters has been used to understand theaegpittary instability. The effect of the free-surface
deformation contributes with another degree of freedomhinstability. The details of the problem have been
investigated and are now in preparation for publication.
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APPENDIX

This Appendix presents the equations of motion and heatfeaat the different orders used in this paper along with
their corresponding boundary conditions. At zeroth ordeflfiid 2, they are

d*Wy
-0 Al
=0, (A1)

. d2W0 2
with Wy=0 at =0 and Wy=0, 7 + kcMagtg =0 at z =1, (A.2)
z

dz’fo
_— = A-3
— =0, (A3)
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) d d d
with 1o = Tyo, %o _ X WO gt L= 0, and 4T _ 0, at z=1 (A.4)
dz dz dz
At zeroth order for fluid 1, they are
Wi _ (A.5)
dz4 7 '
, d?Wig 2
with Wip=0 at z=-dy and Wy =0, 2 yrksMagtip=0 at z=—dw —d, (A.6)
z
dleo
= A7
1.2 ) (A7)
. d d d
with T30 = Two, ﬂ = X Two at z = —dy, and ﬂ =0, at z=—dwy —d. (AS)
dz K dz dz
At zeroth order for the wall, it is: )
d TWo
=0 A.9
72 : (A.9)

which needs the boundary conditions presented above. #\btlier the solution of the three temperatures are equal
and are normalized to 1. That ig = Ty0 = T10 = 1. A solvability condition is obtained from Egs. (A.12),.04), and
(A.19) of the temperatures at the next order using the bayrudenditions. It consists of a system of two homogeneous
algebraic equations from which it is possible to obtainhyMane of the constants remains undetermined but simplifies
automatically in the process.

Now the equations at the next order are presented. At firgrdod fluid 2, they are

dW L, dPW,

T 25 =0, (A.10)
. d2W1 2
with Wiy =0 at =0 and W7 =0, v + k5 (Magt; + Maysto) =0 at z=1, (A.11)
d2
WT; — K270+ Wo = 0, (A.12)
. d d d
with 13 = Ty, T X w1 at z=0 and o 0, at z=1 (A.13)
dz dz dz
At first order for fluid 1, they are
d*Wiy , d*Wig
4 ks— 7 =0 (A.14)
with Wy, =0 at z=—dy, (A15)
. d?Why 2
and with Wi = 0, 022 — ’YT/€S (Mao"fll — ’YTMalsTlo) =0 at 2= —dw — d, (A16)
ST Wio
04 ( 02 — kST]_()) + 7 = O, (Al?)

dTll

d d
T11 — ﬁ w1 at z = *dW7 and d— = 07 at z = *dW —d. (A18)
z

dz K dz
At first order for the wall, it is

with T11 = Twi,

dzTWl
dz?
Here, too, a solvability condition of two homogeneous aftgebequations is obtained from Eqgs. (A.23), (A.28),
and (A.31) of the temperatures in the next order using theesponding boundary conditions. From them it is pos-
sible to calculateyy, the lowest-order growth rate. A constant remains undeterdrbut it simplifies after substitution
of Mag. Consequently, Mg; is obtained in the marginal state whegn= 0.

— k3two = 0. (A.19)
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The equations at the next order are the following. At secaddrdor fluid 2, they are

d4W2 2 d2W1 4 (0} dZWO
dz4 - st dzz + ksWO - ﬁ' dzz — 5 (AZO)
with W, =0 at z=0, (A.21)
. Wy o,
and with W, = 0, v + k5 (Magts + Maggty + Maggto) =0 at z =1 (A.22)
d’t
WZZ — kgv"fl + W1 — 0910 =0, (A23)
. d d d _
with T =T, 2 =ZW2 ot -0, and Z2 4 bikdto=0, at z=1. (A.24)
dz dz dz
At second order for fluid 1, they are
w(d'Wio L Wiy oy 00 d*Wio
0 ( a4 ks thsWo ) — 5 ——5— =0, (A.25)
with Wi, =0 at z= —dy, (A.26)
. d?Wiao 2
and with Wi = O, W — ’YTkS (MaOT12 + Maygt11 + Mazs’l']_o) =0 at z= —dw — d, (A27)
d’t w.
o < dz;z - kngl) + % — 0gT10 =0, (A.28)

dle o ﬁ dTWZ

with T12 = Tw2, at z = 7dw, (A29)

dz K dz
. d bi
and with % — %kgno =0, at z=—dy —d. (A.30)
y4
At second order for the wall, it is
oW C d°t
o/ ()] (552 ) o w2y

which uses the above boundary conditions. For the thirdraydly the following Egs. (A.32), (A.34), and (A.36) of
the temperatures are needed along with their boundary Gomsli

—— — kT + W5 — 0911 — 01790 = O, (A32)
dz?
. d d d .
with T3 = Ty, a3 _ X w3 at z=0, and 4t +bik*t; =0 at z=1, (A.33)
dz dz dz
d?t %%
o < dZ;S - /€2T12) + % — 0gT11 — 01T10 = 0, (A.34)

. d d
with T13 = Tw3, % = % ;ng at z= 7dw,
(A.35)

d bi
and ;;3 _ %k‘lm =0 at z=—dw —d,
d2
{X / (p_wcp_w)] ( LIEN szWZ) _ Gyt — orTio = 0. (A.36)
P2 cp2 dz

A solvability condition is obtained which is useful to gef assuming thatyyg = 0. One constant remains un-
determined but it simplifies in the final expression afterssitiition of the previous Maand Mag. In the marginal
stationary state it is assumed tlwat= 0, the condition from which Mg; is calculated.
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