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The generalized Bose–Einstein condensation (GBEC) theory of superconductivity (SC)

is briefly surveyed. It hinges on three distinct new ingredients: (i) Treatment of Cooper
pairs (CPs) as actual bosons since they obey Bose statistics, in contrast to BCS pairs

which do not obey Bose commutation relations; (ii) inclusion of two-hole Cooper pairs

(2hCPs) on an equal footing with two-electron Cooper pairs (2eCPs), thus making this
a complete boson–fermion (BF) model; and (iii) inclusion in the resulting ternary ideal

BF gas with particular BF vertex interactions that drive boson formation/disintegration

processes. GBEC subsumes as special cases both BCS (having its 50–50 symmetry of
both kinds of CPs) and ordinary BEC theories (having no 2hCPs), as well as the now

familiar BCS-Bose crossover theory. We extended the crossover theory with the explicit
inclusion of 2hCPs and construct a phase diagram of Tc/TF versus n/nf , where Tc and
TF are the critical and Fermi temperatures, n is the total number density and nf that

of unbound electrons at T = 0. Also, with this extended crossover one can construct
the energy gap ∆(T )/∆(0) versus T/Tc for some elemental SCs by solving at least two

equations numerically: a gap-like and a number equation. In 50–50 symmetry, the energy

gap curve agrees quite well with experimental data. But ignoring 2hCPs altogether leads
to the gap curve falling substantially below that with 50–50 symmetry which already
fits the data quite well, showing that 2hCPs are indispensable to describe SCs.
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1. Introduction

The energy gap ∆ is an important result of BCS1 theory; it was discovered exper-

imentally around the same time when the 1957 BCS theory was formulated. The

energy 2∆ is needed to break a Cooper pair (CP) at the Fermi energy2 EF . In weak

coupling λ � 1, gap simplifies to ∆ = 2~ωD exp(−1/λ) where ~ωD is the Debye

energy of the lattice and λ is a dimensionless electron–phonon coupling constant.

According to BCS theory a universal ratio involving the gap at T = 0 and the criti-

cal temperature Tc, namely 2∆(0)/kBTc ' 3.53, must hold for all superconductors.

BCS theory is characterized by an energy-gap equation while the electronic chem-

ical potential µ assumed fixed as µ = EF . In 1963, Schrieffer3 observed that one

must simultaneously solve two coupled equations to determine the gap ∆ and the

chemical potential µ. In 1967, Friedel et al.4 wrote that “two equations must be

solved in the BCS formalism to obtain the gap equation at T = 0.” A bit later

Eagles5 studied two simultaneous equations for the BCS gap ∆ and its associated

chemical potential µ. Solutions of these two equations for Tc came to define the so-

called “BCS-BEC crossover.” Leggett6 (see also Ref. 8) later derived the two basic

equations associated with this crossover picture at T = 07 for any many-identical-

fermion system each fermion of mass m and whose pair interaction is described by

its S-wave scattering length a. We denote the crossover by “BCS-Bose” instead of

by the more familiar “BCS-BEC” since a BEC cannot occur in either 2D nor in

1D9 whereas bosons can form in both instances.

2. Extended Crossover Theory Subsumed in the GBEC Formalism

The GBEC formalism describes an ideal BF ternary gas in 3D consisting of unbound

electrons along with two-electron CPs (2eCPs) as well as two-hole CPs (2hCPs),

both as actual bosons, plus very particular BF interactions. This formalism is fully

described in Refs. 10–13. The GBEC formalism through equilibrium conditions10,11

leads to three coupled, transcendental equations bearing three condensed phases:

Two pure BEC phases, one for 2eCPs and the other for 2hCPs, and a mixed phase

of arbitrary proportions of both kinds of CPs. These three phases are determined

numerically by solving the ensuing three equations, and formally depend on three

unknown functions, all as functions of absolute temperature T : the electron chemical

potential µ(T ), along with the 2eCP and 2hCP BE condensate number-densities

n0(T ) and m0(T ), respectively. One then has the two gap-like equations10

2
√
n0[E+(0)− 2µ] =

∫ ∞
0

dεN(ε)
∆(ε)f+(ε)

E(ε)
tanh

[
1

2
βE(ε)

]
, (1)

2
√
m0[2µ− E−(0)] =

∫ ∞
0

dεN(ε)
∆(ε)f−(ε)

E(ε)
tanh

[
1

2
βE(ε)

]
, (2)

where N(ε) is the electronic density of states, E±(0) are phenomenological en-

ergies of the bosonic CPs with center-of-mass momentum wavenumber K = 0,

E(ε) ≡
√

(ε− µ)2 + ∆2(ε) is the familiar gapped Bogoliubov fermionic dispersion
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Fig. 1. (Color online) Tc/TF versus n/nf for the three equilibrium phases. Thick curve labeled

2eCP phase is obtained by simultaneously solving (1) with (3); thin curve 2hCP phase by solving

(2) with (3) and short-dashed curve by solving (1) plus (2) and (3) with 50–50 symmetry, i.e.,
the unextended BCS-Bose crossover. Blue (online) shaded area marks the mixed crossover region

with arbitrary proportions between 2eCPs and 2hCPs. Long-dashed curve is ordinary BEC curve

graphed here for comparison purposes. Also shown are three temperature bands corresponding to
conventional SCs, exotic SCs (Uemura data16) and a possible room temperature SC with TF = 103

K. Inset shows the chemical potential µ(Tc)/EF versus Tc/TF where one notes that if Tc/TF → 0

all curves tend to µ → EF (weak-coupling extreme). On the other hand, strong-coupling limits
for Tc/TF marked with symbols (◦, 4, � and �), i.e., n/nf →∞ or nf → 0, implying that µ→ 0

and one is at the strong-coupling extreme.

relation and ∆(ε) ≡ f+
√
n0(T )+f−

√
m0(T ) and f±(ε) are the BF vertex-function

interactions as defined in Refs. 10 and 11. In addition, from the well-known result

of statistical mechanics to conserve the net charge of the system, one obtains the

total number-density equation

n ≡ 2n0(T ) + 2nB+(T )− 2m0(T )− 2mB+(T ) + nf (T ), (3)

where nf (T ) is that of the unbound electrons while 2n0(T ) and 2m0(T ) are respec-

tively those bound into 2eCPs and 2hCPs in all ground bosonic states as well as

with excited ones 2nB+(T ) and 2mB+(T ).

An extended BCS-Bose crossover then emerges as one has explicitly included

bosonic 2hCPs in addition to the 2eCPs. For perfect symmetry between 2eCPs

and 2hCPs, i.e., with half-and-half proportions, as n0(T ) = m0(T ) and nB+(T ) =

mB+(T ) (so that n/nf = 1 for 50–50 symmetry) but for µ 6= EF one recovers the

familiar BCS-Bose crossover. From Fig. 1 one sees that two coupling regimes are

present. Weak coupling is around n/nf ' 1 but in this regime one has very low

Tc/TF s as with BCS theory. This extreme is found assuming µ = EF with 50–50
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symmetry so that only one equation now requires solving, the gap equation. On

the other hand, strong coupling corresponds to n/nf → ∞, e.g., nf → 0 as in

this extreme all electrons are bound, thus leaving a pure noninteracting Bose gas

implying no interaction (f = 0) between unbound electrons. This leads one to solve

only the number equation (3). As T increases the entire system is driven into a

crossover region and finally to the strong-coupling regime where there remain no

unbound electrons leaving only a binary gas of bosonic 2eCPs and 2hCPs. The

dramatic Tc enhancement is due to the mere presence of 2hCPs, a behavior anal-

ogous to the relativistic ideal Bose gas14 where the mere presence of antibosons,

created at higher and higher temperatures, increases Tc with respect to that with

no antibosons present.

Energy Gap in the Extended BCS-Bose Crossover

The original BCS-Bose crossover picture for the electronic gap ∆(T ) is

∆(T ) = f
√
n0(T ) = f

√
m0(T ) (4)

where f is a boson–fermion vertex interaction coupling constant inherent to the

GBEC theory. All three functions ∆(T ), n0(T ) and m0(T ) have common “half-

bell-shaped” forms. Namely, they vanish above a certain critical temperature Tc,

and rise monotonically upon cooling (i.e., lowering T ) to maximum values ∆(0),

n0(0) and m0(0) at T = 0. The energy gap ∆(T ) is the order parameter describing

the SC condensed state, while n0(T ) and m0(T ) are the BEC order parameters

(a) (b)

Fig. 2. Energy-gap curves ∆(T )/∆(0) versus T/Tc of extended BCS-Bose crossover for (a) In and
for (b) Sn with n/nf = 1, i.e., the 50–50 symmetry, which coincides precisely with BCS energy-gap

curve. The 2eCPs curve is obtained by simultaneously solving (1) and (3), with n/nf = 1.000035,

i.e., slightly different from the 50–50 symmetry. Note that the 2eCPs curve now falls substantially
below the 50–50 curve agreeing quite well with the data. Here, experimental values of ~ωD/EF

for In and Sn as well as gap experimental data were taken from Ref. 17.
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depicting the macroscopic occupation that occurs below Tc in a BE condensate.

This ∆(T ) is precisely the BCS energy gap if the GBEC theory coupling is taken

as f ≡
√

2V ~ωD where V and ~ωD are the two parameters of the BCS model

interelectronic interaction. Evidently then, the BCS and BEC Tcs are essentially

equivalent.

Writing (4) for T = 0 and dividing this into (4) gives the much simpler

f -independent relation involving order parameters, as well as temperatures T , nor-

malized to unity in the interval [0, 1], namely ∆(T )/∆(0) =
√
n0(T )/n0(0) =√

m0(T )/m0(0). The first equality, apparently first obtained in Ref. 15, connects in

a simple way the two heretofore unrelated “half-bell-shaped” order parameters of

the BCS and the BEC theories. The second equality implies that a BCS condensate

is precisely a BE condensate of equal numbers of 2eCPs and 2hCPs.

Here we solve at least two equations of the extended crossover instead just one

as in the BCS theory, this giving the energy gap ∆(T )/∆(0) versus T/Tc for any

superconductor with a specific value of n/nf . Figure 2 shows energy-gap curves

for In and Sn and compared with experimental data.17 It shows the BCS curve

corresponding with 50–50 symmetry obtained by solving (1) plus (2) with (3) when

n/nf = 1. Also shown in Fig. 2 is the 2eCP case when ∆(T ) = f
√
n0(T ) while one

ignores 2hCPs altogether, namely m0(T ) = 0, this case was used n/nf = 1.000035,

this curve falling below the 50–50 case. Clearly then, 2hCPs play an indispensable,

albeit intriguing,18 role in describing SCs. Lastly, the T-dependence of the upper

critical magnetic field is analyzed in Ref. 11, p. 546, Fig. 7.

3. Conclusion

GBEC theory describes SCs starting with an ideal BF ternary gas made up of

unbound electrons as well as bosonic 2e/2hCPs. It subsumes BCS theory for 50–

50 symmetry between both kinds of CPs. One also recovers the usual unextended

BCS-Bose crossover theory. With the BCS-Bose crossover extended with 2hCPs one

finds a phase diagram with substantially higher Tcs with respect to BCS theory.

One obtains two coupling extremes: when n/nf → 1 one has weak coupling; when

n/nf →∞ one has strong coupling and, of course, intermediate coupling whenever

1 < n/nf < ∞. The extended crossover predicts superconducting energy gaps for

some elemental SCs by solving three equations when n/nf = 1 which coincides

precisely with BCS. Ignoring 2hCPs altogether the energy gap lies below the 50–50

curve, thus implying that 2hCPs are indispensable in describing SCs.

Acknowledgments

We thank F. Marsiglio for calling Ref. 3 to our attention. IC and LAG thanks

CONACyT (Mexico) for postgraduate grant 291001 and 403765, respectively. MG

and MdeLl thank PAPIIT-DGAPA-UNAM (Mexico) for research grant IN116914

and IN100314, respectively.

1745004-5

In
t. 

J.
 M

od
. P

hy
s.

 B
 2

01
7.

31
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 A
U

T
O

N
O

M
O

U
S 

U
N

IV
E

R
SI

T
Y

 O
F 

M
E

X
IC

O
 (

U
N

A
M

) 
on

 0
4/

25
/1

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



October 4, 2017 9:30 IJMPB S0217979217450047 page 6
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