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Applying the generalized Bose–Einstein condensation (GBEC) formalism, we extend
the BCS-Bose crossover theory by explicitly including hole Cooper pairs (2hCPs). From

this follows a phase diagram with two pure phases, one with 2hCPs and the other with

electron Cooper pairs (2eCPs), plus a mixed phase with arbitrary proportions of 2eCPs
and 2hCPs. One has a special-case phase when there is perfect symmetry (i.e., with

ideal 50–50 proportions between 2eCPs and 2hCPs). Explicitly including 2hCPs leads

to an extended BCS-Bose crossover which predicts Tc/TF values for some well-known
conventional superconductors (SCs) (i.e., assuming electron–phonon dynamics). These

compare reasonably well with experimental data. We compare with experimental Tc/TF
values for some conventional SCs associated with the new dimensionless number density
n/nf with theoretical curves associated with the extended crossover for the special case

of perfect symmetry. They all obey the Bogoliubov et al. upper limit, thus vindicating it.

Keywords: Boson-fermion models; generalized Bose–Einstein condensation; BCS-Bose
crossover; hole Cooper pairs.

1. Introduction

In 1963, Schrieffer1 declared that one must simultaneously solve two equations to

determine the energy-gap parameter ∆ and the chemical potential µ, that in BCS2

theory was put equal to the Fermi energy EF , which depends only on the electron

number density. In the mid-1960s, for the first time, Keldysh et al.3 argued that the

weak Coulomb interaction corresponds to the assumption that the mean correlation
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energy is much less than EF , this condition being satisfied for the relatively small

electron number-densities of n ∼ 1018− 1019 cm−3. A year later, Popov4 suggested

a theory of a Bose gas made up of bound pairs of Fermi particles which in the small

density limit describes a system behaving as a Bose gas whose particles should form

a Bose condensate at low enough temperatures. In 1967, Friedel et al.5 proposed

that “two equations must be solved in the BCS formalism to obtain the gap equation

at T = 0.” A couple of years later, Eagles6 studied two simultaneous equations for

the BCS gap ∆ and its associated fermionic chemical potential µ. Solutions of these

two simultaneous equations for Tc thus defined the so-called BCS–BEC crossover.

Leggett7 later derived the two basic equations associated with this crossover picture

at T = 0 (see Ref. 8) for any many-fermion system of identical particles each of

mass m and whose pair interaction is described by its S-wave scattering length a.

At absolute temperature T = 0, these two equations were alternately derived as

reported in Ref. 9. Note that we refer to the crossover as “BCS-Bose” instead of

the usual “BCS–BEC” since a BEC cannot occur in either 2D or in 1D.10

Boson-fermion (BF) models of SCs as a BEC go back to the mid-1950s11,13

predating even the BCS-Bogoliubov theory.2–14 These models, see Ref. 15 and ref-

erences therein, posit the existence of actual bosonic CPs. With a single exception,16

all BF models neglect the explicit effect of hole CPs included on an equal footing

with electron CPs to give a complete BF model16–18 which we here call the GBEC

theory. This enables one to easily deal with nonzero T .

2. GBEC Formalism

The GBEC formalism describes an ideal BF ternary gas in 3D consisting of unbound

electrons along with Cooper pairs of electrons (2eCP) and also of holes (2hCP) as

bosons, plus very particular BF interactions. It is fully described in Refs. 16–18.

The thermodynamic (or Landau) potential in the grand canonical en-

semble is Ω(T, L3, µ,N0,M0) and the Helmholtz free energy below Tc is

F (T, L3, µ,N0,M0) ≡ Ω +µN where N0(T ) and M0(T ) are, respectively, the num-

bers of condensed 2eCPs and 2hCPs, where µ is the chemical potential of the

many-electron subsystem. Taking the negative partial derivative of Ω with respect

to chemical potential, and also minimizing F wrt N0, M0, gives the three require-

ments: −(∂Ω/∂µ) = N , (∂F/∂N0) = 0 and (∂F/∂M0) = 0, where N is the total

number of electrons in the system. The first relation is familiar from grand-canonical

statistical mechanics; here it ensures the net charge conservation of the GBEC for-

malism, i.e., gauge invariance19 — in contrast with BCS theory which lacks of it.

The last two requirements define a stable thermodynamic state.

These three conditions lead to three coupled transcendental equations. From

(∂F/∂N0) = 0 and (∂F/∂M0) = 0, one obtains two gap-like equations16

2
√
n0[E+(0)− 2µ] =

∫ ∞
0

dεN(ε)
∆(ε)f+(ε)

E(ε)
tanh

[
1

2
βE(ε)

]
, (1)
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2
√
m0[2µ− E−(0)] =

∫ ∞
0

dεN(ε)
∆(ε)f−(ε)

E(ε)
tanh

[
1

2
βE(ε)

]
, (2)

where β ≡ 1/kBT , E±(0) are the phenomenological energies of the 2e/2hCPs with

center-of-mass momentum (CMM) K = 0, E(ε) ≡
√

(ε− µ)2 + ∆2(ε) with ∆(ε) ≡
f+
√
n0(T ) + f−

√
m0(T ), N(ε) is the electronic density of states and f±(ε) are

the BF vertex-function interactions as defined in Refs. 16 and 17. In addition,

(∂Ω/∂µ) = −N yields the total number-density equation

n ≡ 2n0(T ) + 2nB+(T )− 2m0(T )− 2mB+(T ) + nf (T ), (3)

where n0(T ) and m0(T ) are, respectively, those of 2e and 2hCPs in the ground

state along with excited 2nB+(T ) and 2mB+(T ), i.e., condensed and noncon-

densed. The number density of unbound electrons at any T turns out to be

nf (T ) ≡
∫∞
0
dεN(ε)[1 − (ε − µ/E(ε)) tanh{ 12βE(ε)}] and taking T → 0 in turn

gives nf (0) = (2mEf )3/2/3π2~3 ≡ nf as reported in Ref. 20. Here, Ef is a “pseudo-

Fermi” energy of the unbound-electron system; from 3, it coincides precisely with

EF only when nB(T ) = mB(T ) and nB+(T ) = mB+(T ) (i.e., 50-50 symmetry).

3. Extended BCS-Bose Crossover

The extended BCS-Bose crossover emerges from GBEC when one explicitly postu-

lates bosonic 2hCPs, i.e., m0(T ) and mB+(T ) in addition to the 2eCPs. For 50-50

symmetry (with µ unspecified), one recovers the original BCS-Bose crossover.

Figure 1(a) shows two coupling regimes. A useful coupling constant that is

interaction-model-independent (in contrast with the λ of BCS theory, λBCS) is the

dimensionless number density n/nf where n is the total number density of the

system and nf the number density of unbound electrons at T = 0. Thus, the weak-

coupling extreme is around n/nf ' 1 but here one gets very low Tc/TF s as implied

by BCS who assumed µ = EF with n/nf = 1 so that one needs to solve just one (the

gap) equation. On the other hand, strong coupling corresponds to n/nf →∞, viz.

nf → 0 as in this extreme all electrons are bound and thus a pure noninteracting

Bose gas with no unbound electrons left. Besides the gap equation, this requires

also solving a number equation.

Figure 1(b) shows experimental Tc/TF s (fourth column in Table 1) as function

of ∆n ≡ n/nf −1, compared with two pairs of theoretical curves from the extended

crossover: (a) top pair of curves labeled λBCS = 1/2 corresponds to the Bogoliubov

et al. upper limit and ~ωD/EF = 0.002, (b) bottom pair of curves is for λBCS = 1/5

and ~ωD/EF = 0.001. The values of ~ωD/EF are typical for conventional SCs.

Black dots refer to experimental values of Tc/TF for each SC associated with 50-50

symmetry, i.e., ∆n = 0. Note that all SC empirical data for Tc/TF fall within the

two theoretical extended-crossover curves.

Table 1 lists elemental superconductors Nb, Hg, Al, In, Pb, and Sn show-

ing extended-crossover Tc/TF -values, compared with experimental and with BCS

theory values. Extended-crossover Tc/TF values (sixth column) were obtained by
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(a) (b)

Fig. 1. (Color online) (a) Phase diagram of Tc/TF versus n/nf with 2eCP curve resulting by

simultaneously solving (1) with ( 3) and 2hCP curve by solving (2) with (3). Blue (online) shaded
area arises from solution of all three equations (1), (2) and (3). Symbols at right mark the Tc/TF
limit values when n/nf →∞. Curve labeled BEC is shown here only for comparison. (b) Theoret-

ical curves from extended-crossover compared with Tc/TF experimental values for aforementioned
SCs. Thick curves labeled 2eCPs phase is obtained by simultaneously solving (1) with (3); 2hCPs

thin curves by solving (2) with (3). Black dots mark experimental Tc/TF values at 50-50 symmetry

(fourth column in Table 1). Error bars fall within dot sizes. Top pair of curves labeled λBCS = 1/2
were found following by the Bogoliubov et al.21 upper limit, with ~ωD/EF = 0.002, while bottom

pair of curves are for λBCS = 1/5 with ~ωD/EF = 0.001, where ~ωD are Debye energies typical
for conventional SCs.

Table 1. Experimental data for some conventional (i.e., presumed electron-phonon) supercon-

ductors compared with the extended BCS-Bose crossover subsumed in the GBEC formalism.

Tc/TF (×10−5)

Tc TF (×105) Expt BCS Extd. Cross.

Al 1.17 1.36 0.87 0.77 0.87

In 3.41 1.00 3.41 3.45 3.40
Sn 3.72 1.18 3.15 3.08 3.14

Hg 4.15 0.83 5.00 6.16 5.01
Pb 7.20 1.10 6.55 8.02 6.55

Nb 9.25 0.62 14.97 16.24 15.00

Notes: Debye, Fermi and critical temperatures are in kelvin units (K).23,24 The BCS gap-Tc ratio

formula 2∆(0)/kBTc ' 3.53 was used to calculate the BCS Tc/TF , using experimental data25 of
the energy gap at T = 0. The Tc/TF values of the extended crossover are taken with n/nf = 1.

In bold are marked the “bad” actors22 of the BCS theory.

solving self-consistently two equations simultaneously, namely, the 2eCP case using

(1) and (3) (thick curve) and 2hCP case solving (2) with (3) (thin curve), these

curves crossing precisely at n/nf = 1 and the Tc/TF value marked by a black dot in

Fig. 1(b). Note that the extended crossover predicts Tc values for aforementioned

SCs quite well, even for the so-called BCS theory “bad” actors.22 Here, we solved

two equations just as suggested by Keldysh et al.,3 Popov,4 Friedel et al.,5 Eagles6
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and finally Leggett,7 rather than just one (the gap) equation with µ = EF as

assumed in BCS theory.

4. Conclusion

The GBEC formalism contains as a special case a BCS-Bose crossover theory

extended with explicit inclusion of 2hCPs. Starting from an ideal BF ternary

gas with particular BF vertex interactions, the extended crossover is defined by

two thermodynamic-equilibrium requirements along with a well-known result from

grand-canonical statistical mechanics that guarantees charge conservation. The Bo-

goliubov et al.21 upper limit of λBCS ≤ 1/2 is seen vindicated by the extended

crossover theory. Finally, for all six SCs, and for perfect ideal symmetry between

2eCPs and 2hCPs, it predicts Tc/TF values agreeing reasonably well with experi-

mental data.
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20. I. Chávez, M. Grether and M. de Llano, J. Supercond. Nov. Magn. 28, 309 (2015).
21. N. N. Bogoliubov, Nuovo Cimento 7, 794 (1958); V. V. Tolmachev and S. V. Tyab-

likov, Sov. Phys. JETP 34, 46 (1958).
22. G. W. Webb, F. Marsiglio and J. E. Hirsch, Physica C 514, 17 (2015).
23. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders College Publishing,

USA, 1976), p. 38 and 729; C. P. Poole Jr. et al., Superconductivity (Academic Press,
Elsevier, New York, 2007), p. 2, 3 and 62.

24. D. K. Finnemore et al., Phys. Rev. 149, 231 (1966); Phys. Rev. 118, 127 (1960); T. E.
Faber, Proc. R. Soc. Lond. A 231, 353 (1955); D. K. Finnemore and D. E. Mapother,
Phys. Rev. 140, A507 (1965); B. J. C. Van der Hoeven, Jr. and P. H. Keesom, Phys.
Rev. 137, A103 (1965).

25. P. Townsend and J. Sutton, Phys. Rev. 128, 591 (1962); P. Richards and M. Tinkham,
Phys. Rev. 119, 575 (1960); I. Giaver and K. Megerle, Phys. Rev. 122, 1101 (1961).

1745013-6

In
t. 

J.
 M

od
. P

hy
s.

 B
 2

01
7.

31
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 A
U

T
O

N
O

M
O

U
S 

U
N

IV
E

R
SI

T
Y

 O
F 

M
E

X
IC

O
 (

U
N

A
M

) 
on

 0
4/

25
/1

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.


	Introduction
	GBEC Formalism
	Extended BCS-Bose Crossover
	Conclusion

