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Inhomogeneity in nanowires can be present in the cross-section and/or by
breaking the translational symmetry along the nanowire. In particular, the
quasiperiodicity introduces an unusual class of electronic and phononic
transport with a singular continuous eigenvalue spectrum and critically
localized wave functions. In this work, the thermoelectricity in periodic and
quasiperiodically segmented nanobelts and nanowires is addressed within the
Boltzmann formalism by using a real-space renormalization plus convolution
method developed for the Kubo–Greenwood formula, in which tight-binding
and Born models are, respectively, used for the calculation of electric and
lattice thermal conductivities. For periodic nanowires, we observe a maximum
of the thermoelectric figure-of-merit (ZT) in the temperature space, as oc-
curred in the carrier concentration space. This maximum ZT can be improved
by introducing into nanowires periodically arranged segments and an inho-
mogeneous cross-section. Finally, the quasiperiodically segmented nanowires
reveal an even larger ZT in comparison with the periodic ones.

Key words: Thermoelectricity, Kubo–Greenwood formula, real-space
renormalization method, nanowire heterostructures

INTRODUCTION

The direct conversion between thermal and elec-
trical energies by thermoelectric devices has
attracted great attention in recent years. Low-
dimensional materials seem to be promising candi-
dates for high-performance thermoelectric devices,
whose efficiency is determined by the dimensionless
figure-of-merit defined as ZT � rS2T

� ��
jel þ jph

� �
,

where the Seebeck coefficient (S), electrical conduc-
tivity (r), electronic (jel) and phononic (jph) thermal
conductivities can be calculated by using the Boltz-
mann formalism.1 The inherent correlation between
these thermoelectric quantities makes difficult to
improve the value of ZT.

In general, the Seebeck coefficient (S) is propor-
tional to the average transported electron energy
relative to the chemical potential (l), i.e.,
S � hE � li.2 Thus, S is null for l located at the

center of a symmetric electronic band. When l
moves towards the band edges in a three-dimen-
sional system, the magnitude of S grows and r
diminishes. The combination of these two trends
leads to the existence of a maximum ZT in the
carrier concentration space.3

In the temperature space, the power factor (rS2)
is null at zero temperature, since r or S is,
respectively, nil for l located outside or inside the
electronic band. Hence, the power factor increases
with T in the low-temperature regime, because it is
a positively defined quantity. This trend has been
observed in single nanowires.4,5 For the extreme
high-temperature limit, both electrons and holes of
a semiconductor have contributions to S with
different sign and almost the same magnitude,
leading to a significant reduction of the Seebeck
coefficient. Consequently, a maximum ZT is often
observed in the temperature space.6

This maximum ZT can be improved by reducing
the cross-section of a nanowire, as reported by many(Received June 2, 2016; accepted September 7, 2016;
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theoretical7 and experimental8 studies, where a
rapid growth of the power factor with the reduction
of cross-section area is observed. On the other hand,
nanowire (NW) heterostructures constitute another
important alternative to improve thermoelectric
properties, because the phonon scattering at the
compositional interfaces leads to a lower lattice
thermal conductivity.9 For example, M2O3(ZnO)n
(M = In, Ga, Fe) segmented nanowires reveal the
importance of segmentation in nanowires.10 In fact,
a quasiperiodic arrangement of these segments
following the Fibonacci sequence could induce
interesting changes in the thermoelectric properties
of a nanowire, since its energy spectrum is singular
continuous on a Cantor set of zero Lebesgue mea-
sure11 whose wavefuctions are critical and self-
similarly localized in the real space.12 In this article,
we analyze the dependence of ZT on the tempera-
ture, carrier concentration, cross-section area and
longitudinal inhomogeneity of a nanowire, by using
the Boltzmann and Kubo–Greenwood formalisms
and a previously developed renormalization plus
convolution method.

In order to isolate the effects of long-range
quasiperiodic order on thermoelectric properties,
we will carry out this analysis by means of a simple
single-electron tight-binding Hamiltonian and a
first-neighbor Born model on cubically structured
nanowires, without considering the electron–elec-
tron and electron–phonon interactions nor the
anharmonicity. This kind of electronic Hamiltoni-
ans has been successfully used in the description of
electronic properties of semiconductors,13 while its
vibrational behavior derived from covalent bonds
can be properly reproduced by the nearest-neighbor
Born model including central and non-central
forces.14,15 Despite the simplicity of this semi-em-
pirical model, its results can be extended beyond the
analyzed parameters, as discussed in ‘‘Analysis of
Parameter Dependence’’.

THE MODEL

Based on the Boltzmann formalism and the
Kubo–Greenwood formula, thermoelectric quanti-
ties can be calculated through16,17

ZT ¼ rS2T

jel þ jph
; ð1Þ

r l;Tð Þ ¼ e2L0 l;Tð Þ; ð2Þ

S l;Tð Þ ¼ � L1 l;Tð Þ
ej jTL0 l;Tð Þ ; ð3Þ

and

jel l;Tð Þ ¼ L2 l;Tð ÞL0 l;Tð Þ � L2
1 l;Tð Þ

TL0 l;Tð Þ ; ð4Þ

where

Ln l;Tð Þ ¼ �2�h

pm2X

Z1

�1

dE E� lð Þn @f
@E

Tr p̂x
~G Eð Þp̂x

~G Eð Þ
n o

;

ð5Þ

being X the system volume, p̂x the projection of
momentum operator along the nanowire,

f Eð Þ ¼ 1 þ exp E� lð Þ= kBTð Þ½ �f g�1 the Fermi-Dirac
distribution with chemical potential l and temper-

ature T, ~G Eð Þ ¼ Gþ Eð Þ �G� Eð Þ the discontinuity of
Green’s functions with G+(E) and G�(E) being the
retarded and advanced single-electron Green’s func-
tions, respectively.18

On the other hand, the lattice thermal conductiv-
ity (jph) can be calculated by using the Kubo–
Greenwood formula for phonons given by19,20

jph Tð Þ ¼ �2�h2

pXkB

X

l

Z1

0

dx
x2e�hx=kBT

T2 e�hx=kBT � 1ð Þ2

Tr Ax
~Gph xð ÞAx

~Gph xð Þ
n o

l
;

ð6Þ

where the summation of l is over the longitudinal (L)

and transversal (T) modes, ~Gph xð Þ is the discontinu-
ity of phononic Green’s functions determined by
Mx2I � U
� �

Gph xð Þ ¼ I and the elements of matrix

Ax are Ax½ �mm0 l; jð Þ � 1
2 Rl �Rj

� �
x
Umm0 l; jð Þ, being M the

atomic mass, I the matrix identity and Umm0 l; jð Þ ¼
@2Vlj

�
@um lð Þ@um0 jð Þ the dynamic matrix. The interac-

tion potential (Vlj) between nearest-neighbor atoms l
and j in the Born model is given by15 Vlj ¼
1
2 a� bð Þ u lð Þ � u jð Þ½ � � n̂lj

�� ��2þ 1
2 b u lð Þ � u jð Þ½ �j j2, where

u jð Þ is the displacement of atom j with respect to its
equilibrium position, a and b are the central and non-
central restoring force constants, respectively. The
unitary vector n̂lj indicates the bond direction
between atoms l and j. Notice that in this article the
temperature dependence of thermoelectric proper-
ties arises from the statistical factors in Eqs. 5 and 6,
while the electronic band structure is independent on
the carrier concentration determined by the position
of chemical potential.

Let us consider a single-band tight-binding

Hamiltonian (Ĥ) with null on-site self-energies

given by Ĥ ¼
P

l;jh i tl;j lj i jh j þ tj;l jj i lh j
� �

, where

tl;j ¼ tj;l is the nearest-neighbor hopping integral.
For the sake of simplicity, a uniform bond length (a)

is taken and p̂x ¼ im
�h Ĥ; x
h i

¼ ima
�h

P
l tl;lþ1 lj i
�

lþ 1h j � tl�1;l lj i l � 1h jg. For a cubically structured

nanowire with planar defects, the Hamiltonian Ĥ
and the dynamic matrix U are separable, i.e.,

Ĥ ¼ Ĥk � Î? þ Îk � Ĥ?, where Ĥk (Îk) and Ĥ? (Î?)
are Hamiltonians (identity matrices) of the parallel
and perpendicular subsystems, respectively. The
convolution theorem can be expressed as21
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Tr p̂x
~G Eð Þp̂x

~G Eð Þ
� 	

¼
X

k

Tr p̂x
~Gk E� Ekð Þp̂x

~Gk E� Ekð Þ
� 	 ð7Þ

for electrons and

Tr Ax
~Gph x2

� �
Ax

~Gph x2
� �n o

l

¼
X

k

Tr Ax
~G
k
ph x2 � x2

k

� �
Ax

~G
k
ph x2 � x2

k

� �n o

l

ð8Þ

for phonons, where Ek and Mx2
k are eigenvalues of

Ĥ? and U?, respectively. In this article, we only
analyze the bond problem, i.e., nanowires with null
self-energies and a constant atomic mass (M).

PERIODIC NANOWIRES

For cubically structured periodic NW of NiN^
atoms connected to two semi-infinite periodic NW
leads with hopping integrals t and Born central (a)
and non-central (b) interactions, analytical solu-
tions of thermoelectric quantities can be found,
since the traces of Eqs. 7 and 8 for a periodic NW
with square cross-section of N^ atoms are, respec-
tively, given by,22

Tr p̂x
~G Eð Þp̂x

~G Eð Þ
n o

¼
X

k

H E� Ek þ 2 tj jð Þ �H E� Ek � 2 tj jð Þ½ �

Nk � 1
� �2

a2m2
.

2�h2
� 	

ð9Þ

and

Tr Ax
~Gph x2

� �
Ax

~Gph x2
� �n o

l

¼�
X

k

1�H x2 �x2
kl
�4x2

l

� 	h i
Nk �1
� �2

a2
.

8
h i

;

ð10Þ
where H(x) is the Heaviside step function, x2

l could
be x2

a ¼ a=M for longitudinal or x2
b ¼ b=M for

transversal vibrational modes,

Ek ¼ �2 tj j cos mp
.

N
1=2
? þ 1

� 	h in

þ cos np
.

N
1=2
? þ 1

� 	h io
;

ð11Þ

x2
kL

¼ 2x2
b 2 � cos m� 1ð Þp

.
N

1=2
?

h in

� cos n� 1ð Þp
.
N

1=2
?

h io
;

ð12Þ

and

x2
kT

¼ 2x2
a 1 � cos m� 1ð Þp

.
N

1=2
?

h in o

þ 2x2
b 1 � cos n� 1ð Þp

.
N

1=2
?

h in o
;

ð13Þ

being m ¼ 1; 2; . . . ;N
1=2
? and n ¼ 1; 2; . . . ;N

1=2
? .

In Fig. 1, we show (a–d) the electronic density of

states DOS lð Þ ¼ � 1
p

P
j Im Gþ

j lð Þ
h i

(blue lines) and

(a¢–d¢) the zero-temperature electrical conductance
g(l) = r(l)X^/Xi (red lines) normalized by the quan-
tum conductance g0 ¼ 2e2

�
h as functions of the

chemical potential (l) for (a,a¢) a periodic chain,
(b,b¢) a periodic nanobelt with cross-section of 7 9 1
atoms, and periodic nanowires with cross-sections of
(c,c¢) 7 9 3 and (d,d¢) 7 9 5 atoms, whose structures
are schematically presented in the respective fig-
ures (a¢¢–d¢¢). All these nanostructures have a length
of Nk ¼ 100663297 atoms connected to two semi-
infinite periodic leads with the same cross-section
and Hamiltonian parameters of the system. The
figures of this section correspond to periodic nanos-
tructures with null self-energies, hopping integral
t = �1 eV, atomic mass M = 4.81381 9 10�26 kg,
central and non-central restoring force constants
a = 100 N/m and b = 20 N/m, respectively. These
vibrational parameters are close to those of crys-
talline silicon15 and lead to �hxa ¼ 30 meV. The
imaginary part of energy used in this article has
been g ¼ 10�3 j t j for DOS and g ¼ 10�3 j t j

�
Nk for

conductance. Observe the quantized conductance
steps present in these periodic nanostructures and
its number grows with the cross-section area.
Furthermore, in DOS spectra, the van Hove singu-
larity is found at the edge of each step.

In Fig. 2, we show (a, a¢, a¢¢) the density of states
(DOS) (gray lines) and electrical conductivity (r)
normalized by r0 = e2Xi/(ap�h) of a periodic chain, (b,
b¢, b¢¢) Seebeck coefficient (S) normalized by
S0 ¼ �kB=je j, (c, c¢, c¢¢) thermal conductivity by
electrons (jel), (d, d¢, d¢¢) lattice thermal conductivity
(jph) normalized by j0 ¼ kBxaXk

�
ð2apÞ of a periodic

chain, and (e, e¢, e¢¢) ZT as functions of chemical
potential (l) for the same periodic (a–e) nanobelt,
(a¢–e¢) nanowire with cross-section of 7 9 3 atoms
and (a¢¢–e¢¢) nanowire with cross-section of 7 9 5
atoms as in Fig. 1. The temperature (T) dependence
of these thermoelectric properties is exhibited in
Fig. 3 for the same nanostructures analyzed in
Fig. 2, where the chemical potentials are chosen at
lout = Ec –0.01 eV and lin = Ec –0.01 eV, being
band edges at Ec = �3.84776 eV, Ec = �5.26197 eV
and Ec = �5.57981 eV, respectively, for the periodic
nanobelt with cross-section of 7 9 1, and nanowires
with cross-sections of 7 9 3 and 7 9 5 atoms.

Observe that the electrical (r) and thermal con-
ductivities (jel and jph) in Fig. 2 diminish with the
growth of cross-section area, due to the quantum
interference between conduction channels. For a
given temperature, the Seebeck coefficient (S) lin-
early increases when l moves away from the band
edge and this linear dependence has a weak influ-
ence of the cross-section area. Furthermore, maxi-
mum values of ZT are found, as a consequence of the
growth of r and the decay of S when l increases, and

González, Sánchez, and Wang2726



their locations go away from the band edge when
the temperature increases.

Figure 3 exhibit thermoelectric properties
obtained from the same nanobelt and nanowires of
Fig. 2, now versus the temperature (T). Observe the
metallic (blue triangles) and semiconducting (ma-
genta circles) behaviors of the electrical

conductivity (r), when the chemical potential (l)
is, respectively, placed inside (lin ¼ Ec þ 0:01 tj j) and
outside (lout ¼ Ec � 0:01 tj j) the electronic band. In
fact, the thermal conductivity by electrons (jel) is
related to r through the Wiedemann-Franz law
given by jel ¼ p2k2

BrT
�

3e2
� �

when l = lin. Further-
more, the thermal conductivity by phonons (jph)

Fig. 1. (a–d) Density of states (DOS) (blue lines) and (a¢–d¢) zero-temperature electrical conductance (g) (red lines) as functions of chemical
potential (l) for (a, a¢) a periodic chain, (b, b¢) a periodic nanobelt, and periodic nanowires with cross-sections of (c, c¢) 7 9 3 and (d, d¢) 7 9 5
atoms, whose structure sketches are, respectively, shown in (a¢¢–d¢¢) (Color figure online).
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grows with T, the Seebeck coefficient (S) decreases
with T, and the maxima of ZT in the temperature
space diminish with the growth of cross-section
area, when l = lout.

SEGMENTED NANOWIRES

In this section, we study segmented nanobelts
and nanowires with two types of blocks, A and B,
which can be periodic or quasiperiodically arranged,
as respectively shown in Fig. 4a–d and a¢–d¢. For
the quasiperiodic case, these blocks are ordered
following the Fibonacci sequence (F) defined by the

addition rule given by F(n) = F(n � 1) � F(n � 2),
where n is the generation number and � indicates
the catenation process. If F(1) = A and F(2) = AB,
the Fibonacci chain of generation four is
F(4) = ABAAB.

For this study, we chose blocks of three bonds,
which can be characterized by hopping integrals (tA,
tB) or by central (aA, aB) and non-central (bA, bB)
restoring force constants, when the electronic or
phononic transport is addressed. The studied nano-
belts and nanowires have inhomogeneous cross-
sections with non-constant hopping integrals (txn and
tyn) placed in such a way that maintains the mirror

Fig. 2. (a, a¢, a¢¢) Density of states (DOS) and electrical conductivity (r), (b, b¢, b¢¢) Seebeck coefficient (S), (c, c¢, c¢¢) thermal conductivity by
electrons (jel), (d, d¢, d¢¢) thermal conductivity by phonons (jph), and (e, e¢, e¢¢) figure-of-merit (ZT) as functions of chemical potential (l) for
periodic nanobelt and nanowires with cross-sections of (a–e) 7 9 1, (a¢–e¢) 7 9 3, and (a¢¢–e¢¢) 7 9 5 atoms.
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symmetry along both x and y directions, as illus-
trated in Fig. 4.

Figure 5 shows the electronic density of states
(DOS) (blue lines) and the zero-temperature elec-
trical conductance (g) (red lines) versus the chem-
ical potential (l) for (a–d) periodically and (a¢–d¢)
quasiperiodically segmented (a, a¢) single chains, (b,
b¢) nanobelts with cross-section of 7 9 1 atoms, and
nanowires with cross-sections of (c, c¢) 7 9 3 and (d,
d¢) 7 9 5 atoms, whose atomic ordering is sketched
in Fig. 4. The numerical calculations were per-
formed by taking tA = 0.3t, tB = t, aA = 0.3a, aB = a,
bA = 0.3b, bB = b and a uniform atomic mass
M = 4.81381 910�26 kg, where t = �1 eV is the
hopping integral, a = 100 N/m and b = 20 N/m are,

respectively, central and non-central restoring force
constants of the periodic leads.

The analyzed nanobelts and nanowires in Fig. 5
have a inhomogeneous cross-section, whose atoms
are connected by hopping integrals tmj ¼ cmj t, central

amj ¼ cmj a and non-central bmj ¼ cmjb restoring force

constants, where j = 1, 2, or 3 and m ¼ x or y with
cx1 ¼ 1:249, cx2 ¼ 0:855, cx3 ¼ 0:579, cy1 ¼ 0:365,
cy2 ¼ 0:517, and cy3 ¼ 0:632. The periodically seg-
mented nanostructures have a length of
Nk ¼ 100663297 atoms and quasiperiodic ones have
a length of Nk ¼ 117264509 atoms corresponding to
generation n = 36. Notice the multiband structure
in Fig. 5a–d, which are related to the periodic

Fig. 3. Temperature (T) dependence of (a, a¢, a¢¢) electrical conductivity (r), (b, b¢, b¢¢) Seebeck coefficient (S), (c, c¢, c¢¢) thermal conductivity by
electrons (jel), (d, d¢, d¢¢) thermal conductivity by phonons (jph), and (e, e¢, e¢¢) figure-of-merit (ZT) for periodic nanobelt and nanowires with cross-
sections of (a–e) 7 9 1, (a¢–e¢) 7 9 3, and (a¢¢–e¢¢) 7 9 5 atoms.

Improving Thermoelectric Properties of Nanowires Through Inhomogeneity 2729



segmentation. For example, there are six electronic
bands in Fig. 5a, which is originated by folding the
first Brillouin zone of a non-segmented linear chain
with a new lattice constant ~a ¼ 6a.23 Moreover, the
values of hopping integral in the cross-section were
chosen in order to preserve true band gaps around
the spectrum center (l = 0) in Fig. 5b–d. For the
quasiperiodic case, at the spectrum center of Fig. 5a¢
there is a narrow band containing a transparent
state24 surrounded by two band gaps, and such
feature is almost preserved in Fig. 5b¢–d¢. In general,
the conductance peaks of quasiperiodic systems are
smaller than those of periodic ones, due to the
absence of translational symmetry. However, this
reduction of electrical conductance does not neces-
sarily imply a worse thermoelectric efficiency.

In Fig. 6, we show (a, a¢, a¢¢) the density of states
(DOS) (gray lines) and electrical conductivity (r), (b,
b¢, b¢¢) Seebeck coefficient (S), (c, c¢, c¢¢) thermal
conductivity by electrons (jel), (d, d¢, d¢¢) lattice
thermal conductivity (jph), and (e, e¢, e¢¢) ZT as

functions of chemical potential (l) for the same
periodically segmented (a–e) nanobelts and nano-
wires with cross-sections of (a¢–e¢) 7 9 3 and (a¢¢–e¢¢)
7 9 5 atoms as in Fig. 5, at temperatures of 5 K
(green triangles), 50 K (blue squares) and 100 K
(red circles). The dashed lines in these figures indi-
cate the electronic band edges.

Notice that in Fig. 6 the values of r, S and jel are
unchanged when the cross-section area grows, in
contrast to the clear reduction of jph, as occurred in
Fig. 2a–a¢¢, c–c¢¢ and d–d¢¢ for periodic nanobelts and
nanowires without segmentation. These collective
behavior leads to an increase of the maximum
values of ZT when the cross-section area goes up.
These maxima are located out of the electronic band
and approach to the band edge located at
Ec = �0.348652 eV when the temperature
diminishes.

Figure 7 exhibit the thermoelectric properties
versus temperature (T) for the same nanobelts and
nanowires analyzed in Fig. 6. The chemical

Fig. 4. Schematic representation of (a–d) periodic and (a¢–d¢) quasiperiodically segmented nanostructures, being (a, a¢) single chains, (b, b¢)
nanobelts with cross-section of 791 atoms, (c, c¢) and (d, d¢) nanowires with cross-sections of 793 and 795 atoms, respectively. Both segments,
A and B, contain three bonds characterized by hopping integrals tA or tB. The cross-sections have non-constant hopping integrals distributed by
keeping the mirror symmetry.
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potentials (l) were chosen for lin = Ec + 0.01 eV
(blue triangles) and lout = Ec + 0.01 eV (magenta
circles) for the same band edge of Fig. 6. Notice the
growth of ZT from 0.2 of Fig. 3 to almost unity and
its enhancement with the cross-section area, when
the segmentation and inhomogeneous cross-section
are introduced, in spite of the qualitative likeness
between Figs. 3 and 7.

In Fig. 8, the same thermoelectric properties of
Fig. 6 are exhibited as functions of the chemical
potential (l) for quasiperiodically segmented (a–e)
nanobelts and nanowires with cross-sections of (a¢–
e¢) 7 9 3 and (a¢¢–e¢¢) 7 9 5 atoms sketched in
Fig. 4b¢–d¢. The analyzed band edge is located at
Ec = �0.33234 eV. Observe the fluctuation of the
electrical conductivity (r) at 5 K around

Fig. 5. Density of states (DOS) (blue lines) and zero-temperature electrical conductance (g) (red lines) versus chemical potential (l) for (a–d)
periodic and (a¢–d¢) quasiperiodically segmented (a, a¢) single chains, (b, b¢) nanobelts with a cross-section of 7 9 1 atoms, and nanowires with
cross-sections of (c, c¢) 7 9 3 and (d, d¢) 7 9 5 atoms (Color figure online).
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l = �0.32 eV, consistent with the density of states
spectra (solid gray lines). These fluctuations caused
by a dense distribution of bands and gaps smooth
out as the temperature grows. Moreover, we note an
additional increase of 20% in the maximum ZT at
100 K, mainly due to the reduction of thermal
conductivities.

Figure 9 show the temperature dependence of
thermoelectric properties corresponding to
quasiperiodically segmented nanostructures of
Fig. 8. The analyzed chemical potentials (l) were
lin = Ec + 0.01 eV (blue triangles) and lout = Ec �

0.01 eV (magenta circles) with Ec = �0.33234 eV. In
contrast to Fig. 7, ZT for lin is close to that for lout,
raised from a neither metallic nor semiconductor
temperature dependence of r. Also, we observe an
almost linear growth of ZT with temperature
around 100 K, which suggests a possible larger ZT
close to the room temperature.

ANALYSIS OF PARAMETER DEPENDENCE

There are essentially four parameters in the
electronic and vibrational Hamiltonians of periodic

Fig. 6. (a, a¢, a¢¢) Density of states (DOS) and electrical conductivity (r), (b, b¢, b¢¢) Seebeck coefficient (S), thermal conductivities by (c, c¢, c¢¢)
electrons (jel) and (d, d¢, d¢¢) phonons (jph), and (e, e¢, e¢¢) figure-of-merit (ZT) as functions of chemical potential (l) for periodically segmented
nanobelts and nanowires with inhomogeneous cross-sections of (a–e) 7 9 1, (a¢–e¢) 7 9 3, and (a¢¢–e¢¢) 7 9 5 atoms.
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systems and they are the hopping integral (t),
atomic mass (M), central (a) and non-central (b)
restoring force constants. Actually, the results only
depend on two normalized ones �hxa= tj j and �hxb

�
tj j,

where xa ¼
ffiffiffiffiffiffiffiffiffiffi
a=M

p
and xb ¼

ffiffiffiffiffiffiffiffiffiffi
b=M

p
. In Fig. 10, the

room-temperature (T = 300 K) thermoelectric ZT is
plotted as a function of these normalized parame-
ters for tA/tB = 1, 0.5, and 0.3. In the last two cases,
quasiperiodically segmented nanowires with cross-
section of 7 9 5 atoms are considered, as in Fig. 8.
Notice a general enhancement of ZT in Fig. 10 with
the quasiperiodicity strength, i.e., ZT grows when
the ratio tA/tB moves away from the periodic case

with tA/tB = 1, and a similar dependence of ZT on
�hxa= tj j and �hxb

�
tj j for the three analyzed cases.

Observe also the existence of two maximums of ZT
located at �hxa � �hxb ! 0 and at �hxa � �hxb � 0:1 tj j
for each value of tA/tB, where the first one is due to
the vanish of lattice thermal conductivity. The
second maximum of ZT at �hxa � �hxb � 0:1 tj j is
originated from the increase of the vibrational band
width when �hxa and �hxb grow, whose phononic

DOS x2
� �

and Tr Ax
~Gph x2

� �
Ax

~Gph x2
� �n o

l
for the

periodic case are similar to those shown in Fig. 1d.22

In other words, the growth of �hxa and �hxb leads to a

Fig. 7. Temperature (T) dependence of (a, a¢, a¢¢) electrical conductivity (r), (b, b¢, b¢¢) Seebeck coefficient (S), thermal conductivities by (c, c¢,
c¢¢) electrons (jel) and (d, d¢, d¢¢) phonons (jph), and (e, e¢, e¢¢) figure-of-merit (ZT) for periodically segmented nanobelt and nanowires with cross-
sections of (a–e) 7 9 1, (a¢–e¢) 7 9 3, and (a¢¢–e¢¢) 7 9 5 atoms.
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shift of the maximum of both phononic DOS and

Tr Ax
~Gph x2

� �
Ax

~Gph x2
� �n o

l
toward high frequency

and then, for a fixed temperature the Bose–Einstein
distribution in Eq. 6 will cover a smaller portion of
three-dimensional phonon band. In consequence, a
minor lattice thermal conductivity and a larger ZT.

Moreover, Fig. 10 shows an asymmetrical depen-
dence of ZT on �hxa and on �hxb, since for both
longitudinal and transversal vibration modes the

non-central first-neighbor interactions (b) has a
double contribution to the lattice thermal conductiv-
ity than the central one (a) within the Born model. It
would be worth stressing that the results of ZT
presented in the previous sections correspond to two
specific points of �hxa ¼ 0:03 tj j and �hxb ¼ 0:0134 tj j on
the surfaces of tA/tB = 1 and tA/tB = 0.3 in Fig. 10.
Hence, the enhancement of ZT through the
quasiperiodicity seems to be general and indepen-
dent of the Hamiltonian parameters chosen.

Fig. 8. (a, a¢, a¢¢). Density of states (DOS) and electrical conductivity (r), (b, b¢, b¢¢) Seebeck coefficient (S), (c, c¢, c¢¢) thermal conductivity by
electrons (jel), (d, d¢, d¢¢) thermal conductivity by phonons (jph), and (e, e¢, e¢¢) figure-of-merit (ZT) as functions of chemical potential (l) for
quasiperiodically segmented nanobelts and nanowires with inhomogeneous cross-sections of (a–e) 7 9 1, (a¢–e¢) 7 9 3, and (a¢¢–e¢¢) 7 9 5
atoms.
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CONCLUSIONS

The effects of structural inhomogeneity on the
thermoelectric properties of nanobelt and nanowires
with macroscopic length are analyzed by means of a
real-space renormalization plus convolution
method. The results reveal a clear increase of the
thermoelectric figure-of-merit (ZT) when the seg-
mentation is introduced, in accordance with exper-
imental data.10 In fact, the quasiperiodicity
significantly diminishes the thermal conduction of
long wavelength acoustic phonons, which are
responsible of the phononic conductivity at low
temperature, and it is not easy to block their
transmission since they do not feel local defects
nor impurities. Contrary to periodic nanowires,
there is no reduction of ZT when the cross-section
area grows. In summary, the results of this work

Fig. 9. Temperature (T) dependence of (a, a¢, a¢¢) electrical conductivity (r), (b, b¢, b¢¢) Seebeck coefficient (S), (c, c¢, c¢¢) thermal conductivity by
electrons (jel), (d, d¢, d¢¢) thermal conductivity by phonons (jph), and (e, e¢, e¢¢) figure-of-merit (ZT) for quasiperiodically segmented nanobelts and
nanowires with inhomogeneous cross-sections of (a–e) 7 9 1, (a¢–e¢) 7 9 3, and (a¢¢–e¢¢) 7 9 5 atoms.

Fig. 10. Thermoelectric figure-of-merit (ZT) at 300 K as a function of
normalized Hamiltonian parameters �hxa= tj j and �hxb

�
tj j, for a peri-

odic nanowire with tA/tB = 1 and quasiperiodically segmented nano-
wires with tA/tB = 0.5 and 0.3. All these nanowires have a cross-
section of 7 9 5 atoms, as in Fig. 8.
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suggest the possibility of optimizing the thermo-
electricity through the inhomogeneity under design.

This analysis was carried out by means of semi-
empirical models applied to cubically structured
nanowires with a specific set of parameters. However,
its main result of the possibility to improve ZT by
introducing long-range inhomogeneity into nanowires
could not depend on the parameters chosen as shown
in ‘‘Analysis of Parameter Dependence’’, and it would
be useful in the design and fabrication of efficient
thermoelectric devices, as suggested by the results of
M2O3(ZnO)n (M = In, Ga, Fe) segmented nanowires.10
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