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Swimming micro-organisms often have to propel themselves in complex non-
Newtonian fluids. We carry out experiments with self-propelling helical swimmers
driven by an externally rotating magnetic field in shear-thinning inelastic fluids.
Similarly to swimming in a Newtonian fluid, we obtain for each fluid a locomotion
speed that scales linearly with the rotation frequency of the swimmer, but with a
prefactor that depends on the power index of the fluid. The fluid is seen to always
increase the swimming speed of the helix, up to 50 % faster, and thus the strongest of
such type reported to date. The maximum relative increase is for a fluid power index
of approximately 0.6. Using simple scalings, we argue that the speed increase is not
due directly to the local decrease of the flow viscosity around the helical filament,
but hypothesise instead that it originates from confinement-like effect due to viscosity
stratification around the swimmer.

Key words: biological fluid dynamics, non-Newtonian flows, propulsion

1. Introduction

The physics of swimming micro-organisms is a field of study that has long supplied
different branches of natural sciences and engineering with an endless list of problems
(Lighthill 1976). Swimming cells provide, for example, physicists with experimental
models for active out-of-equilibrium matter (Ramaswamy 2010; Marchetti et al. 2013),
while allowing engineers to draw inspirations to devise biomimetic designs (Nelson,
Kaliakatsos & Abbott 2010). In parallel, theorists have developed models allowing
the interpretation of numerous phenomena from the natural world, such as the
swimming of flagellated bacteria (Berg 2004), the role of fluid forces in reproduction
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(Fauci & Dillon 2006) and the physics of cilia-driven flows (Sleigh, Blake & Liron
1988; Smith, Blake & Gaffney 2008).

One of the areas of significant recent interest aims to understand the effect
of swimming in a complex fluid. In this case, work has primarily focused on
attempting to capture locomotion either in real biological fluids, e.g. mucus, or
in model viscoelastic fluids. Physically, a non-Newtonian fluid provides a small
swimmer with at least two sources of nonlinearities, namely the shear dependence
of its viscosity and the emergence of elastic stresses (Morrison 2001). While both
effects are typically present in any given biological configuration, they are physically
very different, and it is important to separate their effects on locomotion in order
to gain fundamental understanding of their impact on swimming micro-organisms
(Elfring & Lauga 2015). Note that another potential source of nonlinearity is the
elasto-hydrodynamic coupling of appendage (e.g. flagella) and flow. If the propulsion
is the result of flapping flexible appendages, then the swimming performance depends
on the shape of these appendages, which, in turn, depends on the flow field around
them (Riley & Lauga 2014; Godinez et al. 2015). This coupling therefore complicates
the understanding of each separate effect.

Locomotion in complex fluids has recently received a lot of attention, primarily in
the form of theoretical investigations. Small-amplitude analytical work showed how
sheets and filaments are slowed down by elastic stresses (Fu, Powers & Wolgemuth
2007; Lauga 2007; Fu, Wolgemuth & Powers 2009), while flexibility (Riley & Lauga
2014), the presence of multiple travelling waves (Riley & Lauga 2015) or viscosity
stratification (Man & Lauga 2015) can lead to enhanced locomotion. A similar
framework was also developed for three-dimensional geometries (Lauga 2009, 2014).
The impact of inelastic shear-thinning stresses was tackled using an asymptotic study
of swimming sheets, showing that it was, however, of higher order in most cases
(Vélez-Cordero & Lauga 2013), while the application to three-dimensional swimmers
typically showed a non-monotonic decrease (Datt et al. 2015).

Numerical simulations have allowed the probing of regimes not accessible by
asymptotic work. To capture the role of elastic stresses, the geometries tackled have
included finite-size sheets deforming at high amplitude (Teran, Fauci & Shelley 2010;
Chrispell, Fauci & Shelley 2013; Thomases & Guy 2014; Li & Ardekani 2015),
spherical swimmers acting tangentially on the fluid (Zhu et al. 2011; Zhu, Lauga
& Brandt 2012) and infinite helices (Spagnolie, Liu & Powers 2013). The role of
shear-thinning viscosity was addressed on two-dimensional (Montenegro-Johnson,
Smith & Loghin 2013) and spherically symmetric swimmers (Datt et al. 2015),
showing that a small enhancement was possible.

In contrast to the flurry of theoretical work, only a small number of experimental
studies have probed in detail the impact of non-Newtonian stresses on locomotion,
the majority of which have focused on the role of elasticity. A helical filament driven
in rotation in a viscoelastic fluid underwent slower force-free swimming than in the
Newtonian limit in most cases, although a modest increase was possible at large
helical amplitude (Liu, Powers & Breuer 2011). On the other hand, rigid sheets
(Dasgupta et al. 2013) and flexible filaments (Espinosa-Garcia, Lauga & Zenit 2013)
undergoing planar waving motion were measured to swim faster in constant-viscosity
elastic fluids. As an extreme case, reciprocal swimmers could be made to move
due to elasticity (Keim, Garcia & Arratia 2012). The swimming of real flagellated
bacteria in polymeric solutions was recently shown to be explained by Newtonian
theory, while non-Newtonian effects at high molecular weight arose from the fact
that flagellar filaments are so thin that they essentially experience only the solvent
viscosity (Martinez et al. 2014).
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To date, only three experimental investigations have addressed the sole effect
of shear-thinning viscosity on self-propulsion. Dasgupta et al. (2013) measured
the propulsion speed of waving sheets embedded on freely rotating cylinders. Elastic
fluids with shear-thinning viscosities (carboxymethyl cellulose and polyethylene oxide)
always lead to a decrease of the locomotion speed (for fixed characteristics of the
wave) compared with the Newtonian limit. The only experimental studies of biological
systems to date have focused on the nematode Caenorhabditis elegans swimming in
high-viscosity synthetic polymer solutions (xanthan gum) (Gagnon, Shen & Arratia
2013; Gagnon, Keim & Arratia 2014). While a change of fluid led to changes in the
flows produced by the swimming worm, no change to the swimming kinematics was
noticeable in the dilute limit, a result consistent with theoretical predictions in two
dimensions (Vélez-Cordero & Lauga 2013). In contrast, in a concentrated system an
increase of the swimming speed was reported (Gagnon et al. 2013).

There is thus a need for more systematic studies addressing how a controlled
variation of the rheological parameters of shear-thinning fluids impacts well-defined
swimming strategies. In this paper, we present the results of such a study. We measure
experimentally the locomotion speed of macroscopic artificial swimmers composed
of a rigid cylindrical body (with a small magnet enclosed at its tip) and a rigid
helical filament rotated by an external magnetic field. These swimmers and their
propulsion method are motivated by the helical locomotion of flagellated bacteria
(Berg 2004). Using inelastic fluids with shear-thinning viscosities well-fitted to a
power-law behaviour with a range of power indices from 0.47 to 1, we investigate
how rheology impacts locomotion. Since the swimmers are propelled by a rigid
helix, the kinematics of the propulsive element remain fixed and constant for all
cases, simplifying one of the aspects of the problem. Like in a Newtonian fluid, the
locomotion speed of the swimmer is found to always scale linearly with the rotation
frequency of the magnetic field, but with a prefactor which (i) is a function of the
power index of the fluid, (ii) is always above the Newtonian prefactor, indicating
enhanced locomotion, and (iii) is maximum for a fluid power index of approximately
0.6. We argue that this increase above the Newtonian result is not due directly to the
local decrease of the viscosity around the helical filament, but instead originates from
the recently proposed confinement-like effect due to viscosity stratification around the
swimmer (Li & Ardekani 2015; Man & Lauga 2015).

2. Experimental set-up

2.1. Swimmer and actuation
All experiments in this paper were conducted using the magnetic set-up developed
by Godinez, Chavez & Zenit (2012). The swimmer is illustrated in figure 1. A
rotating magnetic field, generated by a Helmholtz coil pair, is used to actuate a
small synthetic swimmer. The swimmer consists of a cylindrical plastic head of
diameter D = 4.2 mm and length L = 22.3 mm, in which a permanent magnet is
encased (Magcraft, model NSN0658). If the strength of the external magnetic field is
sufficiently strong, the swimmer rotates at the same frequency. A rigid steel-wire helix
of diameter d = 0.9 mm is attached to the head, which, as a result of its rotation,
produces the thrust that propels the device. The diameter of the helix is 2R= 4.2 mm,
with a pitch angle of θ = 57◦ and a length of LT = 37 mm. The swimmers were
placed inside a rectangular tank (160 mm × 100 mm × 100 mm) which fitted into
the region of uniform magnetic field inside the coils of approximately (100 mm)3 in
size where the test fluids were contained. For all of the cases, the angular frequency
of the rotating coils was below the step-out frequency (Godinez et al. 2012); in other
words, the swimmer rotates at the same rate as the external magnetic field.

812 R3-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

80
7

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
id

ad
 N

ac
io

na
l d

e 
M

ex
ic

o 
(U

N
AM

), 
on

 2
6 

Ap
r 

20
18

 a
t 1

7:
28

:5
6,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2016.807
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


S. Gómez, F. A. Godínez, E. Lauga and R. Zenit

FIGURE 1. Schematic view of the rigid synthetic swimmer: helical tail attached to a
cylindrical head. The head shows the position of the permanent magnet. All dimensions
are in mm.

2.2. Test fluids and rheology
Two types of fluid were fabricated, tested and used: one Newtonian reference fluid and
four shear-thinning fluids with negligible viscoelasticity. The rheological measurements
were conducted using a rheometer (TA Instruments AR1000N) with a cone-plate
geometry (60 mm, 2◦, 65 µm gap). We plot in figure 2 the dynamic viscosity of
the fluids under steady shear, while the physical properties of the solutions and their
compositions are shown in table 1. Clearly, all four non-Newtonian fluids display
a power-law behaviour in steady shear rates, γ̇ , within 0.1 < γ̇ < 100 s−1. Their
rheological behaviour was closely fitted to a power-law model

µ=m|γ̇ |n−1, (2.1)

where m and n are the consistency and power indices of the fluids respectively, whose
values are tabulated in table 1. Furthermore, within this range of shear rates, the
rheometer did not register any measurable normal stress difference, and at least N1 <
1 Pa. To confirm negligible viscoelasticity, we also conducted oscillatory rheological
tests, following the scheme proposed by Velez-Cordero et al. (2011); in all cases the
storage modulus was smaller that the loss modulus. Furthermore, the relaxation time
was estimated to be of the order of 10−3 s; considering the characteristic shear rates
in our experiments (see below), the viscoelastic effects are deemed to be negligible.
The Newtonian fluid, a glucose–water mixture, was fabricated a posteriori in order
to have a shear viscosity of the same order as that of the shear-thinning fluids (see
table 1).

Since the viscosity of these fluids is dependent on the rate of deformation, it is
important to estimate the characteristic values of the shear rates around the swimmer.
If U denotes the linear velocity of the swimmer, ω its rotation rate and D the typical
size of the head, we can estimate the characteristic values of the shear rate due to
translation and rotation of the head, namely γ̇H,trans = U/D and γ̇H,rot = ω. Near the
helical tail of thickness d, the estimate for shear rate in translation is γ̇T,trans = U/d,
while in rotation it becomes γ̇T,rot = ωD/d since the filament moves with a typical
velocity ωD through the fluid. For all cases, the shear rates range from 0.04 to
9.88 s−1, which are within the range in which the test fluids have a clear power-law
behaviour.
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FIGURE 2. Dynamic viscosity (in Pa s) as a function of shear rate (s−1) for all of the
test fluids in steady shear configuration. The lines indicate the fit to a power-law model,
equation (2.1), for 0.1< γ̇ < 100 s−1.

Fluid Composition n m ρ Remax

(−) Pa sn kg m−3

N (@) G/W, 91/9 0.99 0.662 1349 0.06
ST1 (u) EG/C/TEA, 97.91/0.06/2.03 0.83 0.321 1116 0.18
ST2 (f) EG/C/TEA, 99.88/0.10/0.02 0.63 1.031 1113 0.11
ST3 (s) EG/C, 99.90/0.10 0.61 1.729 1113 0.12
ST4 (q) EG/C/TEA, 99.27/0.70/0.03 0.47 3.979 1110 0.12

TABLE 1. Physical properties of all of the fluids tested in this investigation. The amount of
each ingredient to make the fluids (water (W), glucose (G), ethylene glycol (EG), Carbopol
(C) and triethylamine (TEA)) is indicated in percentage by weight.

To validate our experimental technique and to ensure that there are no other effects,
a set of additional measurements were conducted using Newtonian fluids with different
viscosities, ranging from 0.1 to 4.5 Pa. The speed of the swimmer in these fluids was
measured to be identical in all cases (data not shown). Furthermore, the Reynolds
number (calculated so as to account for the shear-dependent viscosity) is shown in
table 1. For all cases, Re< 0.18, and therefore inertial effects are negligible.

3. Results and discussion

3.1. Experimental results
For each fluid, we measured the free-swimming speed of the device as a function of
the angular frequency of the rotating magnetic field, all other parameters being kept
fixed. No significant wobbling was observed and the swimmers propelled essentially
along straight lines, as can be seen in movies 1 and 2 provided in the supplementary
material available at https://doi.org/10.1017/jfm.2016.807. The maximum wobbling
angle, θ , was measured to be 1 ± 0.1◦, leading to negligible differences between
body-frame and lab-frame swimming velocities.
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FIGURE 3. (a) Swimming speed, U (mm s−1), as a function of the frequency, ω/2π (s−1);
(b) non-dimensionalised speed, U/(ωD), as a function of the rotational frequency, ω/2π
(s−1), where D is the diameter of the helix.

The raw experimental results are plotted in figure 3(a) for Newtonian fluid (empty
squares) and all four shear-thinning fluids (filled symbols). Each data point shows the
mean measured speed over four repeated experiments, and has error bars equal to
or smaller than the one shown in the figure. As can be seen, the swimming speed
scales linearly with the angular frequency, and is always above that obtained in the
Newtonian case (empty squares).

In order to further validate this apparent linear dependence, we plot in figure 3(b)
the swimming velocity non-dimensionalised by the diameter of the swimmer and the
angular frequency. Except at very small frequencies (where the uncertainty for small
rotational speeds is larger), we observe an almost constant normalised velocity, which
is a function solely of the rheological properties of the fluid. It should be recalled that
in all cases the same swimmer is used.

Since the swimming speeds in both Newtonian and shear-thinning fluids scale
approximately linearly with frequency, this suggests that their ratio will be constant.
This is confirmed in figure 4(a), where we plot the ratio between the non-Newtonian
swimming speed, UNN , and the Newtonian value, UN , as function of the angular
frequency of the external field. It should be noted that since the data in figure 3
are not all obtained for the same frequency, we first fit the Newtonian data to a
straight line (indicated by the dashed line in figure 3) and then divide the mean
non-Newtonian results by this fitted line. Swimming enhancements of up to 50 % are
obtained, the strongest reported to date experimentally.

The results in figure 4(a) confirm a systematic, and roughly constant, enhancement
of speed above the Newtonian results. We then compute the mean value of this speed
enhancement, as shown by the dashed lines, and plot its dependence on the power
index of the fluid in figure 4(b). Strikingly, and beyond experimental errors (error
bars are indicated on the figure), the enhancement is non-monotonic: the fluids with
a power index of n ≈ 0.6 appear to lead to the largest increase in swimming above
the Newtonian value.

It should be noted that in figure 4(b), there is an additional data point at n =
0.87 (empty red circle). This data point corresponds to additional tests conducted
with the ST1 fluid (filled red circles), but after two months. It is well known that
the rheological properties of these fluids evolve with time (Brennen & Gadd 1967).
Therefore, the fluid was characterised again. Both the consistency coefficient and the
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FIGURE 4. (a) Ratio between the swimming speed in a non-Newtonian fluid, UNN , and
the Newtonian one, UN , as a function of the frequency of the rotating magnetic field;
(b) mean enhancement ratio, 〈UNN/UN〉, as a function of the fluid power index, n.

power index had changed slightly (n = 0.87, m = 0.405 Pa sn). The results obtained
with this fluid are consistent with the rest of the data.

3.2. Discussion
Based on our experimental results, it is clear that one fundamental question needs
to be answered, namely why does a change of the fluid from Newtonian to non-
Newtonian lead to an increase in the swimming speed?

Four different physical mechanisms can be brought forward to explain the increase
in swimming speed. The first one is the role played by the head of the swimmer. The
rotation of the head leads to a decrease of the viscosity of the fluid surrounding it, and
thus a decrease of its drag. For an unchanged propulsion force, this would lead to a
faster swimming speed, similarly to recent experimental observations in sedimentation
of rotating spheres (Godinez et al. 2014). To rule out this effect, we performed
additional experiments with swimmers with half-as-long heads. It was found that the
ratio between non-Newtonian and Newtonian speeds remained unchanged despite the
difference in head length. One of these results is shown in figure 5(a).

A second hypothesis could be the role of a non-Newtonian wake. As the swimmer
progresses through the fluid head-first, the head lowers the viscosity of the fluid.
A cloud of low-viscosity fluid is dragged behind the head, which could affect the
creation of thrust by the helical filament. This effect is likely to be small for inelastic
fluids with no memory, but in order to rule it out, we performed experiments where
we rotated the magnetic field in the opposite direction, leading to helix-first swimming.
The results were unchanged, and the same speeds were measured for all cases. Results
of a typical experiment showing this behaviour are displayed in figure 5(b). It should
be noted that since the typical shear rate near the helical filament is actually larger
than that around the head, an even lower viscosity wake could potentially be induced
by the tail rather than the head in the reverse motion. Since the data in figure 5(b) do
not show any directional preference, this argument clearly does not explain a faster
swimming in shear-thinning fluids.

A third route to a change in the swimming speed could come from the difference in
local viscosity near the swimmer head (typical value denoted µH) and helical tail (µT)
(Martinez et al. 2014). To address this, we consider a simple Newtonian-like model.
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FIGURE 5. (a) Ratio between the swimming speeds, UNN/UN , as a function of the
frequency of the rotating magnetic field for swimmers with two different head lengths,
L; (b) swimming speed, U (mm s−1), as a function of the frequency, ω/2π (s−1) for two
directions of motion (head-first and tail-first). For both plots, the ST2 fluid was used (see
table 1).

The swimming speed of the device comes from the balance between thrust created
by the helix, T , and drag from both the helix (DT) and the body (DH), leading to
an overall force-free motion. Assuming a locally Newtonian fluid with viscosity µT ,
the thrust and drag created/experienced by the helix of radius R as it rotates with
frequency ω and translates at speed U scale as

Tr∼µTωR2f , DT ∼µTURg, (3.1a,b)

where f and g are dimensionless functions of the geometry of the tail. Similarly, the
head drag scales as

DH ∼µHUDh, (3.2)

where D is the head diameter and h is a dimensionless function of the body geometry.
Balancing (3.1) and (3.2) as DT +DH ∼ Tr leads to the scaling

µTURg+µHUDh∼µTωR2f , (3.3)

and thus a swimming speed approximately given by

U ∼ ωRf(
g+ µH

µT

D
R

h
) . (3.4)

The problem then boils down to understanding how the ratio of viscosities is expected
to vary with n. For fixed geometry and rotation rate, since the fluid follows a power-
law rheology, the ratio of viscosities is of the order of the ratio of shear rates,

µH

µT
∼
(
γ̇H

γ̇T

)n−1

. (3.5)

However, since there is a large difference in diameter between the body and the helical
filament (d�D), we have γ̇H� γ̇T , and thus the ratio of viscosities is a small number
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to the power n− 1 which decreases with n, i.e.

d
dn

(
µH

µT

)
< 0. (3.6)

A decrease in n will thus increase the viscosity ratio and decrease the swimming
speed. This is the exact opposite of what is seen in our experiments, and therefore
another physical mechanism is at the origin of the speed increase.

We hypothesise in this paper that the enhancement of locomotion is due to the
gradients in the fluid viscosity, which result from the spatial gradients in the shear
rates. In other words, the simple Newtonian scaling above is not correct because it
ignores the fact that swimming in a viscosity gradient is akin to swimming under
(soft) confinement. An increase of the swimming speed resulting from confinement
was first discussed by Katz (1974) for the case of Newtonian fluids; the subject has
recently been studied numerically (Liu, Breuer & Powers 2014). Consequently, in
(3.1) and (3.2), the prefactor is not a constant but depends also on the gradients in
viscosity. This conjecture is consistent with two recent studies which have shown this
confinement to be responsible for significant swimming enhancement in two and three
dimensions (Li & Ardekani 2015; Man & Lauga 2015). In their numerical study, Li
& Ardekani (2015) considered the locomotion of a waving sheet; they showed that
the field of viscosity around the sheet for the cases where swimming enhancement
was observed displayed a well-defined corridor of low-viscosity fluid confined by
a high-viscosity region. Man & Lauga (2015) analytically showed that a waving
sheet or a three-dimensional filament would swim faster when it is surrounded by a
higher-viscosity fluid, arguing that the viscosity gradient affects the ratio of normal
to tangential forces. In our case, the shear induced by the rotation of the head and
the tail gives the fluid in the vicinity of the swimmer a smaller value of viscosity
than that at larger distances. As a simple mathematical model for this, consider the
rotation of a cylinder of radius a immersed in a fluid with power-law behaviour; this
could represent either the head of the swimmer (diameter D) or its tail (diameter d).
Solving for the two-dimensional Cauchy equation for the shear stress, and then
inverting the equation to derive the velocity field, allows us to compute the effective
local viscosity, µeff , analytically, and we obtain

µeff =m
[

2ω
n

(a
r

)2/n
]n−1

. (3.7)

Clearly, the local viscosity in the fluid is spatially dependent, with low viscosity near
the cylinder and increasing away from it, in a manner that depends on both the shear-
thinning properties of the fluids (m and n) and the rotational speed ω. With this simple
approach, how strong are the gradients in the viscosity? Using (3.7), we can compute
the value of the viscosity gradient near the cylinder and obtain

∂µeff

∂r

∣∣∣∣
r=a

= m
aω
(1− n)(2ω)n

nn
. (3.8)

Remarkably, the function in (3.8) is not necessarily monotonic in n. It is always
increasing for decreasing values of n near 1, i.e. for fluids that are slightly shear
thinning. However, for some values of ω, the viscosity gradient can reach a maximum
value at a finite value of n before decreasing when one decreases n further. This
simple model is thus consistent with both the increase in UNN/UN for n . 1 and
the observed maximum in the ratio at an intermediate value n ≈ 0.6. We note that,
similarly, Li & Ardekani (2015) found that if the ratio of viscosities between the
inner and outer regions is too large, the swimming enhancement is weakened.
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4. Conclusions

In this paper, we have conducted experiments with helical swimmers with a
fixed shape that self-propel under the action of an external magnetic field in
well-characterised shear-thinning inelastic fluids. It was found that for all of the
cases considered, the swimming speed scaled linearly with the actuation frequency,
in agreement with the prediction for Newtonian fluids. However, and most relevant,
the swimming speed for a given frequency was always larger for the shear-thinning
fluid than that for the Newtonian case. The ratio UNN/UN was found to be a function
of the power-law index n, increasing from the Newtonian case (n = 1) to reach
a maximum at n ≈ 0.6, to then decrease as n decreased further. Considering the
different scenarios that could lead to an enhancement in the swimming speed, we
ruled out the effect of the head, the effect of a wake and the effect of a contrast
between the local viscosities of the head and the tail. The only argument consistent
with our results (arguably obtained indirectly by discarding all other possible effects)
was a confinement-like effect. In a manner similar to that predicted for helices within
solid confinement, and more recently for waving sheets in shear-thinning fluids (Li
& Ardekani 2015) and waving sheets and filaments in a region of low viscosity
surrounded by a high-viscosity fluid (Man & Lauga 2015), the swimming speed of
the helical swimmer is larger than in the unconfined case. In order to fully unravel the
physical origin of enhanced swimming in a shear-thinning fluid, a visualisation of the
fluid structure around the swimmer, using, for example, particle image velocimetry,
would allow us to verify our hypothesis. We hope that our results will encourage
future work along these lines.
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