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a b s t r a c t 

In this predominately predictive modelling finite volume/element study, a comparative analysis is performed for 

time-dependent and viscoelastoplastic flow in a circular contraction-expansion geometry of aspect-ratio 10:1:10. 

For this, a hybrid finite volume/element scheme is employed. A new and revised micellar model is investi- 

gated, under the denomination of BMP + _ 𝜏p , which reflects a bounded extensional viscosity response and an 

N 1 Shear -upturn at large deformation rates (lost in earlier model-variants), a versatile model capable of supporting 

plasticity, shear-thinning, strain softening-hardening and shear-banding. Many of these features are common to 

wormlike micellar and polymer solutions. Then, findings are contrasted against a de Souza Mendes model. Two 

flow regimes are addressed: plastic flow (low flow-rate Q ≤ 1 units, solvent-fraction 𝛽 < 10 − 1 ) and viscoelastic flow 

(larger- Q > 1; minimised plasticity; 𝛽 = 1/9); as quantified via flow-structure, yield-fronts and pressure-drops . Under 

the plastic regime , elasticity-increase causes asymmetry about the contraction-plane, whilst yield-stress and en- 

hanced strain-hardening promote solid-like features, apparent through augmented unyielded-regions and rising 

pressure-drops. Concerning the viscoelastic regime and vortex-structures, extensional-deformation experienced cor- 

relates with hardening expectation in uniaxial-extension, whilst streamline activity in vortex-cells correlates with 

normal-stress response in shear. Adjustment in strain-hardening/softening response with Q-rise , provides trans- 

lation from weaker salient-corner vortex centres to stronger elastic corner-vortices; yet, when softening finally 

prevails, asymmetric upstream/downstream salient-corners vortex patterns are recovered. For strong-hardening 

and solvent-dominated 𝛽∼0.8 fluids (as with Boger fluids ), an intermediate lip-vortex-formation phase is noted, 

alongside coexistence of salient-corner vortices. Such a vortex-coexistence phase is distinctly absent in solute- 

concentrated fluids. 
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. Introduction 

The theme of this predictive study is that of thixotropic-

iscoelastoplastic flow in complex deformation. The constitutive

quations employed reflect this and are model variants from the classes

f Bautista–Manero [1–8] and de Souza Mendes [9–11] . The study

s conducted under a flow-rate (Q) -increase protocol, and hence,

nder fixed fluid relaxation-time (Maxwellian averaged, 𝜆1 ). Such

 procedure mimics the experimental set up, for which generally,

 test fluid is pumped through an apparatus at a fixed steady-state

ow-rate ( Q) , whereupon increase in flow-rate is initiated in incre-
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ental steps between steady-states. Under such prevailing steady-state

onditions, and/or during transients between steady-states, relevant

easurements may be performed to account for - (i) the influence

f fluid-characteristics on flow-structure (streamlines from parti-

le velocimetry, stress-fields from flow birefringence), and (ii) the

orces required to maintain these flow conditions (pressure-drops

n contraction/contraction-expansions; drags in flow past objects).

earing this in mind, the present analysis aims to numerically predict

he flow of such fluids through a circular sharp-cornered contraction-

xpansion of aspect-ratio 𝛼 = 10. This particular choice of geometry

nd contraction-ratio, exhibits many and varied features observed

xperimentally for some Boger fluids [12] , that have been reproduced

ecently by continuum modelling using the swanINNFM(q) model

13] . There, complex vortex-phasing was retrieved, in which co-

xistence of lip and salient-corner vortices at intermediate flow-rates,

volved into strong elastic-corner vortices at high flow-rates. This

as accompanied by adjustment in excess pressure-drop levels by

ome ∼600%. Accordingly, with the potential of this flow-geometry to
September 2018 
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Acronyms and abbreviations 

a dSM model kinetic parameter 

ABS - f ABSolute f -functional correction 

b dSM model kinetic parameter 

BMP Original Bautista–Manero–Puig model variant, 

see [1] 

BMP + _ 𝜏p Latest Bautista–Manero–Puig model variant; see 

present work & [38] 

dSM de Souza Mendes model, see [7,9–11] 

𝑫 Rate-of-deformation tensor 

ecv Elastic-corner vortex 

epd Excess pressure-drop 

𝑓 Structural f -functional 

FENE Finite Extensible Non-linear Elastic models 

𝐺 𝑠 ( 𝜆) Structure-dependent elastic modulus, dSM model 

𝐺 0 Elastic modulus at vanishing shear-rates 

IKH Isotropic-Kinematic Hardening model 

IVP Initial-value-problem 

𝐼 𝐼 𝜏𝑝 
Second-invariant of the polymeric stress tensor 

𝐼 𝐼 𝐷 Second-invariant of the rate-of-deformation ten- 

sor 

K Power-law consistency coefficient 

𝑘 0 Inverse of the structure-destruction stress 

KEP Kinetic Elasto-Plastic model 

LAOS Large Amplitude Oscillatory Shear 

L Characteristic length 

lv Lip-vortex 

m dSM model kinetic parameter 

MH Moderate-Hardening fluid 

n Power-law index 

N 1 First normal-stress difference in complex flow 

N 1 Shear First normal-stress difference in simple shear 

flow 

NH No-Hardening fluid 

NM_T New Micellar total-stress-based model, see [4] 

NM_ 𝜏p New Micellar polymeric-stress-based model, see 

[4] 

𝑝 Isotropic pressure 

PTT Phan-Thien-Tanner models 

Q Flow-rate 

Re Non-dimensional group Reynolds number 

sc Salient-corner vortex 

SH fluid Strong-Hardening fluid 

SGR model Soft Glassy Rheology Model 

STZ model Shear Transformation Zone model 

swanINNFM(q) Swansea-Institute of Non-Newtonian Fluid Me- 

chanics model, see [13] 

𝑻 Total stress tensor 

T rz Shear-stress 

t Time 

t eq Characteristic-time for structure-equilibrium, 

dSM models 

𝒖 Velocity 

U Characteristic velocity 

VGR Velocity-Gradient Recovery correction 

𝑊 𝑖 Non-dimensional group Weissenberg number 
r  

y  

t  

s  

f  

[

189 
Greek symbols 

𝛼 Contraction-expansion of aspect-ratio 

𝛽 Solvent-fraction 

Δp total Total pressure-drop 

�̇�0 𝑑 Shear-rate level for transition between 𝜏0 to 𝜏0 𝑑 , dSM 

model 

𝜂Ext Uniaxial extensional viscosity 

𝜂𝑝 Polymeric viscosity 

𝜂𝑝 0 Polymeric viscosity at zero shear-rates 

𝜂𝑠 Solvent viscosity 

𝜂𝑠𝑠 Steady-state polymeric viscosity, dSM model 

∇ Gradient operator 

𝜆𝑚 dSM structure-parameter 

𝜆𝑠𝑠 Steady-state dSM structure-parameter 

𝜆1 Relaxation time 

𝜆1 ̇𝛾 Non-dimensional shear-rate 

𝜆s Characteristic time of structure construction, Bautista–

Manero models 

𝜔 Non-dimensional structural construction parameter, 

Bautista–Manero models 

𝜔 DS Non-dimensional structural construction parameter, 

dSM models 

𝜌 Fluid density 

𝝉𝑝 Polymeric stress tensor 

𝜏0 Dynamic yield-stress parameter, dSM model 

𝜏0 𝑑 Static yield-stress parameters, dSM model 

𝜉 Non-dimensional viscous-structural destruction param- 

eter, Bautista–Manero models 

𝜉𝐺 0 
Non-dimensional elastic-structural destruction parame- 

ter, Bautista–Manero models 

Ψsal Vortex intensity 

Ψsal_avg Average vortex intensity 

eveal such strong and complex features of flow-structure and energy

xchange, two flow regimes are selected here for further analysis:

 viscoelastic regime and a plastic regime . The viscoelastic flow regime

pplies at intermediate-to-high flow-rates, in which purely-liquefied

iscoelastoplastic material flows, where flow-structure is tracked via

ortex dynamics and first normal-stress difference. The plastic flow

egime occurs at low flow-rates, in which some solid-like features also

rise, and which are evaluated, in flow-structure, through yield-fronts,

nd, in energetic aspects, through pressure drops. Then under complex

eformation, the prevalent rheological properties to study, include

hear-thinning, strain-hardening/softening, thixotropy and plasticity. 

Viscoelastoplastic materials and their application Viscoelastoplastic ma-

erials are ubiquitous in the man-produced goods (paints, cements,

oams, tooth paste, mayonnaise, waxy oils, foodstuff) and fluids in na-

ure (blood, sputum, tissues) [14,15] . Particular attention has been de-

oted to oil-extraction, drilling muds and transport of waxy oils in

ipe-lines [14–16] . Recent studies point out the necessity of a vis-

oelastic contribution in characterising previously-considered simple

ield-stress materials as Carbopol in particle-settling and other com-

lex flows, where a combination of shear and extensional deformations

romote viscoelastoplastic and thixotropic response [17–20] , and for

hich novel measurements of extensionally-active features are of im-

ortance [21] . Moreover, plastic-to-liquid like transition has been con-

idered as a consequence of a dynamic structure-destruction and refor-

ation, hence, introducing a thixotropic ingredient to explain such a

esponse [15,22] . This recent interest in the time-dependent side of the

ielding phenomenon is reflected in an increasing number of publica-

ions considering thixotropy and viscoelasticity to approximate the re-

ponse of viscoelastoplastic materials in ideal and complex flows [23] ,

act that stands as a motivation from the present and previous works

6,7] . 
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On constitutive modelling Typical and representative constitutive

quations for these thixotropic and viscoelastoplastic fluids are con-

tructed upon coupled stress and fluid-structure equations. Bautista–

anero model fluids were originally proposed to approximate the rheol-

gy of wormlike micellar solutions [1–5,8] . That is, so-called ‘smart flu-

ds - viscoelastic surfactants’, given their ability to break and reform their

nternal structure, subject to the changing environmental conditions of

eformation they are exposed to. As such, they are useful to provide

ersatility - as injectant fluids in enhanced oil-recovery, drag-reducing

gents, thickeners in personal products (shampoos, body soaps) and

ousehold products (hard-surface cleaners, drain-openers, liquid dish-

ashing detergents), and carriers in drug-delivery systems [24,25] . In

ontrast, de Souza Mendes model variants were devised to represent

he rheology of crude-oils and waxes [9–11,26] . Despite their disparate

rigin, these two models have in common an additional partial differ-

ntial equation, to describe the dynamic evolution of fluid-structure,

nacted through mechanisms of construction and destruction. Within

he oil-rheology-based constitutive models, one may find equations-of-

tate that combine a descriptive framework of viscoelasticity, through

 fluid-structure description, and plasticity, through a Bingham-type

ield-stress response. Examples are the Isotropic-Kinematic Hardening

odel (IKH model; [27] ) and models that merge the plastic Bingham-

ike and viscoelastic Oldroyd-B-like fluid response [28,29] . There is an

lternative point of view to model viscoelastoplastic materials based on

he description of their microstructure; such models aim to describe the

hysical interactions between constituents of these materials at the mi-

roscale and, then, retrieve macroscale predictions of rheological prop-

rties. Illustration of such models are the Soft Glassy Rheology SGR-

odel [30,31] , which apart from predicting yield-stress features, it mod-

ls shear-banding under LAOS [32,33] ; the Kinetic Elasto-Plastic KEP-

odel [34] and the Shear Transformation Zone STZ-model [35] . 

With both Bautista–Manero and de Souza Mendes models, such a set

f constitutive equations reflects distinct properties of shear-thinning,

train-softening/hardening, first normal-stress difference, yield-stress

nd shear-banding [36–38] . The first normal-stress difference response

n shear-deformation N 1 Shear is highly non-linear, with a second up-

urn at high shear-rates. Nevertheless, some essential differences be-

ween the models are apparent: (i) through the nature of the struc-

ure parameter - the Bautista–Manero structure-parameter represents a

imensionless fluidity 𝑓 = 

𝜂𝑝 0 
𝜂𝑝 

, whilst the de Souza Mendes structure-

arameter reflects a dimensionless elastic modulus 𝜆𝑚 = 

𝐺 0 
𝐺 𝑠 ( 𝜆) 

; (ii) this

ifference in structure-parameter interpretation provokes adjustment to

he polymeric extra-stress equation - Bautista–Manero fluids fit well into

n Oldroyd-B-type stress-equation, in which the structure-parameter

nly affects the source stress-term (i.e. 𝑓 𝝉𝑝 ); alternatively, de Souza

endes fluids somewhat alter such traditional differential-form, with

he structure parameter modulating both the source stress-term and

he non-linear upper-convective derivative stress-term (i.e. 
∇ 
𝝉𝒑 ); (iii)

ithin the structure-destruction term of the structure-parameter equa-

ion, the factor driving the non-linear evolution features differs – this be-

ng the dissipation-function for Bautista–Manero models; whilst corre-

pondingly, de Souza Mendes model early variants contain a dimension-

ess stress-tensor second-invariant [9,10] (latterly replaced by unity in

 corrected de Souza Mendes version [11] ); (iv) elasticity in the structure

quation : whilst some Bautista–Manero model variants have an explicit

ontribution from the fluid relaxation-time 𝜆1 in the destruction-term

4–8] , de Souza Mendes forms are devoid of this [9–11] . Naturally, such

imilarities and differences motivate the present investigation. 

Enhancing numerical tractability - ABS-f- and VGR-corrections – Non-

deal yield-stress materials, such as heavy oil-fractions, suspensions and

astes, may be represented as extremely solute-concentrated (solvent-

ractions of 𝛽 ≤ 10 − 1 ) viscoelastic fluids. These high levels of polymer-

oncentration ( > 90%), together with the high deformation-rates im-

osed by the increase-flow-rate protocol adopted, pose considerable

hallenge to effective predictive modelling in retaining numerical
190 
ractability. This is so, even at modest levels of viscoelasticity. As such,

nhanced numerical stability is afforded through a Velocity-Gradient

ecovery correction ( VGR -correction) and the ABSolute f -functional cor-

ection ( ABS - f -correction). In this, VGR -correction imposes shear-free

xtensional deformation along the symmetry-line and a discrete cor-

ection for continuity; whilst ABS- f -correction to the constitutive-model

tructure-functional f , guarantees thermodynamic consistency and en-

ures positive viscosity estimation in complex flow (see [5] ). These

orrections are devised to constrain the loss of initial-value-problem

 IVP ) evolution and its consequent lack of positive definiteness in

he system, alongside error propagation (see [5,8] and Section 3 be-

ow). Such corrections have been implemented successfully in a num-

er of applications, as exemplified through the simulation of - worm-

ike micellar fluids in complex flow in non-banding [5,8] and band-

ng conditions [38] , the flow of viscoelastoplastic fluids in contraction-

xpansions (rounded-corner, 𝛼 = 4; [6,7] ), and the flow of Boger flu-

ds in contraction-type flows. The work on Boger fluids has resulted in

he close match of some well-founded experimental pressure-drop data

also flow-structure), encompassing contraction-expansion and contrac-

ion forms, planar/circular configurations [39] , rounded/abrupt corners

13,39–41] , hyperbolic shape [42–44] , and change in contraction-ratio

13] . 

. Governing equations, constitutive modelling & theoretical 

ramework 

The relevant field equations for the flow problem in hand are those

overning mass conservation and momentum transport, coupled to an

quation-of-state for stress. Taken in non-dimensional form, the mass

nd momentum equations may be expressed, under incompressible and

sothermal conditions, as: 

 ⋅ 𝒖 = 0 , (1)

e 𝜕 𝒖 
𝜕𝑡 

= ∇ ⋅ 𝑻 − 𝑅𝑒 𝒖 ⋅ ∇ 𝒖 − ∇ 𝑝. (2)

Here, t represents time, spatial-gradient and divergence differential

perators apply over the problem domain, with field variables u , p and

 of fluid-velocity, hydrodynamic-pressure and total viscoelastic-stress

ontributions, respectively. Then, the total viscoelastic-stress ( T ) may be

egregated into two parts: a solvent-component 𝝉𝑠 (viscous-inelastic 𝝉𝑠 =
 𝛽𝑫 ), and a polymeric nonlinear-component 𝝉𝑝 . Though plasticity may

e introduced into either solvent or polymeric components, or indeed

oth, here the theme is to consider only contributions arising from those

f a polymeric source. Hence, the viscoelastoplastic nature is embedded

n a unified form through the networked structure of the material in a

ombined manner. 

Adopting 𝑫 = ( ∇ 𝒖 + ∇ 𝒖 T )/2 is the rate-of-deformation tensor, for

hich superscript ‘ T ’ denotes tensor-transpose operation, then dimen-

ionless variables may be established as: 

𝒙 ∗ = 

𝒙 

𝐿 

, 𝒖 ∗ = 

𝒖 

𝑈 

, 𝑡 ∗ = 

𝑈 

𝐿 

𝑡 𝑫 

∗ = 

𝐿 

𝑈 

𝑫 , 

𝑝 
∗ = 

𝝉𝑝 (
𝜂𝑝 0 + 𝜂𝑠 

)𝑈 
𝐿 

, 𝑝 ∗ = 

𝑝 (
𝜂𝑝 0 + 𝜂𝑠 

)𝑈 
𝐿 

. 

This provides for a reference zero shear-rate total viscosity, ( 𝜂𝑝 0 +
𝑠 ), in the viscoelastic regime, with zero-rate polymeric-viscosity 𝜂𝑝 0 ,

nd 𝜂𝑠 the constant solvent-viscosity. Based upon these definitions, a

olvent-fraction 𝛽 = 𝜂𝑠 ∕( 𝜂𝑝 0 + 𝜂𝑠 ) may be adopted, extracting the non-

imensional group Reynolds number Re = 𝜌𝑈𝐿 ∕( 𝜂𝑝 0 + 𝜂𝑠 ) . Parameters

re then: material density 𝜌, and characteristic scales of 𝑈 on velocity

mean velocity, based on volume flow-rate) and 𝐿 on spatial-dimension

based on minimum contraction-gap dimension). Hence, a natural rate-

cale to adopt emerges as ( 𝑈/ 𝐿 ). 

The degree of elasticity is interpreted through the non-dimensional

roup Weissenberg number, 𝑊 𝑖 = 𝜆 𝑈∕ 𝐿 , defined on the product of a
1 
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Fig. 1. a) 𝜂Shear and 𝜂Ext , b) T rz and c) N 1 Shear ; BMP + _ 𝜏p ; 𝛽 = 1/9; hardening comparison: NH { 𝜔 , 𝜉G0 } = {4, 1}, MH { 𝜔 , 𝜉G0 } = {4, 0.1125}, SH { 𝜔 , 𝜉G0 } = {0.28, 

0.1125}. 
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Fig. 2. a) 𝜂Shear and 𝜂Ext , b) T rz and c) N 1 Shear ; BMP + _ 𝜏p ; SH fluids solvent-fraction comparison: 𝛽 = {0.9, 0.5, 1/9}. 
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Fig. 3. Material functions: BMP + _ 𝜏p v dSM (a-b) NH fluids, 𝛽 = 1/9, N 1 Shear -inflection-point matching across models; (c-d) MH fluids, 𝛽 = 1/9; N 1 Shear -inflection-point 

matching across models + hardening; (e–f) SH fluids, 𝛽 = 0.7, 𝜂Ext -peak matching across models. 
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Fig. 4. 𝜂Shear and 𝜂Ext , T rz and N 1 Shear ; dSM (left) and BMP + _ 𝜏p (right); second Newtonian-plateau scaling; MH fluids. 
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Fig. 5. Results section outline; a) viscoelastic regime; b) plastic regime. 
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c  
haracteristic material relaxation-time ( 𝜆1 = 

𝜂𝑝 0 
𝐺 0 

, where G 0 is the elas-

ic modulus at zero shear-rate), and a characteristic rate-scale ( 𝑈/ 𝐿 ).

he non-dimensional group Weissenberg number may be recast, by

sing the commonplace definition of flow-rate, i.e. 𝑄 = 𝐴𝑈 = 𝜋𝐿 

2 𝑈 ,

s 𝑊 𝑖 = 𝜆1 
𝑄 

𝜋𝐿 3 
. With this Wi -definition one is able to increase elas-

icity and non-linearity by a couple of ways when the characteristic

eometry length-scale L is defined; i.e. one may increase viscoelastic-

ty by increasing the characteristic-time of the fluid 𝜆1 at fixed Q , or

ia a Q -increase protocol at fixed 𝜆1 . In this work, we opt for fix-

ng the characteristic-time of the fluid as 𝜆1 = 1 s, and promote flow,

nd hence viscoelastoplastic response, through an incremental- Q steady-

tate solution-acquisition procedure. Consequently, such definitions ren-

er the possibility of analysing flow-response in terms of either Wi or

 interchangeably. Armed with such definitions, a general space-time

ifferential statement for the stress equation-of-state may be expressed

s: 

 𝑖 
∇ 
𝝉𝑝 = 2 ( 1 − 𝛽) 𝑫 − 𝑓 𝝉𝑝 , (3)

here, the upper-convected derivative of extra-stress, 
∇ 
𝝉𝑝 = 

𝜕 𝝉𝑝 

𝜕𝑡 
+ 𝒖 ⋅

 𝝉𝑝 − ∇ 𝒖 𝑇 ⋅ 𝝉𝑝 − 𝝉𝑝 ⋅ ∇ 𝒖 , appears on the lhs of Eq. (3 ), modulated by the

lastic-response of the material through Wi , and material structure is in-

orporated through the structural pre-functional ( f ) producting the poly-

eric stress itself, 𝝉𝑝 . 
195 
.1. BMP + _ 𝜏p model approximation 

Under derivation through the Bautista–Manero-Puig BMP-family of

hixotropic constitutive models, the non-linear structure f -functional is

elated explicitly to the viscosity of the fluid. Indeed, the f -functional

epresents a dimensionless fluidity ( 𝑓 = 

𝜂𝑝 0 
𝜂𝑝 

, inverse viscosity); see [4–

] . In the present study, a novel and revised model-variant is pro-

osed, via the so-called BMP + _ 𝜏p model [38] ; an advance on the pre-

ious BMP model [1,2] . This new BMP + _ 𝜏p model enjoys the bene-

ts of the inclusion of a relaxation-time 𝜆1 (elasticity) in the fluid-

tructure construction-destruction dynamics [4–8] , whilst retaining a

odified non-linear destruction-term. These BMP + _ 𝜏p features provide

imultaneously two key experimental-manifestations in wormlike mi-

ellar and concentrated polymer solution rheology: first, a bounded

xtensional-viscosity 𝜂Ext -response; and secondly, a first normal-stress

n shear N 1 Shear with upturn at high deformation rates (the former is the

dvance upon the original BMP model). 

For the thixotropic BMP + _ 𝜏p micellar model, evolution of the struc-

ure dynamic f -functional follows the partial differential equation: 

𝜕 

𝜕𝑡 
+ 𝒖 ⋅ ∇ 

)
𝑓 = 

1 
𝜔 

( 1 − 𝑓 ) + 

(
𝜉
𝐺 0 
𝑊 𝑖 − 𝜉𝑓 

)|||𝝉𝑝 ∶ 𝑫 

|||. (4)

In the above, the dimensionless micellar-structure coefficients ap-

ear in Eq. 4 . These account for structural construction ( 𝜔 = 𝜆𝑠 
𝑈 

𝐿 
, a

ime constant) and structural destruction (via 𝜉𝐺 0 = 

𝑘 0 𝐺 0 
𝜂∞+ 𝛿 ( 𝜂𝑝 0 + 𝜂𝑠 ) and

= 𝑘 0 ( 𝜂𝑝 0 + 𝜂𝑠 ) 
𝑈 

𝐿 
; two stress constants). Here, 𝜆s represents the charac-

eristic time of structure-construction, k 0 is the inverse of the structure-

estruction stress and ( 𝜂∞ + 𝛿) is the viscosity of the polymer at high

eformation-rates. One notes in addition, that ABS- f -correction is en-

orced (see [5–8] for detail), to ensure both physically consistent vis-

osity estimation and at the same time enhanced numerical tractability.

First, one may reflect on current advances in constitutive model de-

elopment for the micellar BMP-family of fluids , and their ever-improving

heological properties accorded thereby. The original BMP model lacked

nite extensibility (infinite- 𝜂Ext at finite strain-rates), whilst attractively,

 1 Shear rose at high shear-rates [1,2] . Subsequent BMP model mod-

fications of Boek et al. [3] led to MBM models, corrected for 𝜂Ext -

nboundedness, by simplifying the destruction-term in Eq. (4 ), yet in-

eriting as a consequence, a retrograde flattening in N 1 Shear to a termi-

ating plateau at high shear-rates. Shifting attention to pressure-drops

nd model predictions under complex flows, the MBM model was sub-

equently found inadequate in producing consistent epd -predictions to-

ards the theoretic Stokesian limit (see findings for 4:1:4 contraction-

xpansion flow [4] ). This position was then resolved through NM_ 𝜏p 

nd NM_T model-variants [4–8] , by including viscoelastic description

via the relaxation-time 𝜆1 ) within the fluid-structure dynamics ( Eq. 4 ).

inally, on this basis, the undesirable flattening in N 1 Shear was addressed

nd corrected for under the present BMP + _ 𝜏p form. This implies that

ustained viscoelastic influence is anticipated to apply, as one explores

id to large deformation-rates. 

.2. de Souza Mendes (dSM) model approximation 

The original de Souza Mendes model was presented in dimensional

otal-stress form, coupled with an evolutionary partial differential-

quation for material-structure 𝜆 to govern the dynamics [9–11] . In the

urrent study, as in [7] , the dSM stress equation is re-cast into a split

orm 𝐓 = 𝝉𝑠 + 𝝉𝑝 , in which the solvent-contribution 𝝉𝑠 is of constant vis-

osity Newtonian-type. The polymeric-stress component may then be

earranged to obtain: 

 𝑖 
∇ 
𝝉
𝑝 
= 2 ( 1 − 𝛽) 

𝜆𝑚 
𝑫 − 𝑓 𝝉𝑝 , (5)

here the f -functional is defined as 𝑓 = 

1 
𝜆𝑚 

( 𝜂𝑝 0 ∕ 𝜂𝑝 ) , the polymeric vis-

osity is 𝜂𝑝 ( 𝜆) = ( 𝜂𝑝 0 
𝜂𝑠 

) 𝜆 − 1 , and a structural modulus is 
𝐺 𝑠 ( 𝜆) 
𝐺 0 

= 

1 
𝜆𝑚 

. Note,
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Fig. 6. Salient-corner vortex-intensity ( − Ψsal ) against flow-rate Q ; BMP + _ 𝜏p ; a) upstream; b) downstream; hardening comparison: NH { 𝜔 , 𝜉G0 } = {4, 1}, MH { 𝜔 , 

𝜉G0 } = {4, 0.1125}, SH { 𝜔 , 𝜉G0 } = {0.28, 0.1125}, 𝛽 = 1/9. 
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(
 

nd unique to this model, the structural-parameter ( 𝜆) dictates response

n both viscosity and elastic modulus. It appears as an inverse fac-

or in the dissipation-term in Eq. 5 , but also within the f -functional

nd the shear-modulus definitions. This suggests a more complex dSM

uid-structure/material-property dependency. That is, as opposed to the

MP-class of fluids, whose structural f -functional defines a much sim-

ler dimensionless fluidity, appearing only as a multiplying factor on

tress in Eq. (3 ). The interpretation is that the powered-form of the dSM
196 
tructure-parameter, products and amends the viscoelastic contributions

n Eq. (5 ), via the term 𝜆𝑚 𝑊 𝑖 . 

Accordingly, the dSM structure-parameter evolution equation for 𝜆

s: 

𝜕 

𝜕𝑡 
+ 𝒖 ⋅ ∇ 

)
𝜆 = 

1 
𝜔 𝐷𝑆 

[ 

( 1 − 𝜆) 𝑎 + 

(
1 − 𝜆𝑠𝑠 

)𝑎 ( 

𝜆

𝜆𝑠𝑠 

) 𝑏 
] 

, (6)



J.E. López-Aguilar et al. Journal of Non-Newtonian Fluid Mechanics 261 (2018) 188–210 

Fig. 7. Streamlines against flow-rate Q and hardening level {NH, MH, SH}; BMP + _ 𝜏p , 𝛽 = 1/9. 
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here, 𝜔 DS = t eq U/L is a dimensionless time-parameter for 𝜆, and,

 eq is a characteristic-time for structure-equilibrium. As such, Eq. (6 )

tates a new and corrected form of dSM structure-equation, follow-

ng [11] whilst correcting for destruction term inconsistency. In brief,

q. (6 ) omits a second-invariant multiplicative factor on the destruc-

ion term (i.e. 
𝐼 𝐼 𝜏𝑝 

𝜂𝑝 ( 𝜆) 𝐼 𝐼 𝐷 
, which is replaced here by unity). This correc-

ion was performed by de Souza Mendes and Thompson [11] for con-

istent structure-parameter 𝜆–prediction under shear-flow conditions,

s reported. Although in complex flow omission of this dimensionless-

tress factor can trigger instability (unboundedness in extension), such

 factor becomes unity under ideal steady-state flow, and hence should

ot greatly affect predictions in the vicinity of such state (see on to re-

ults and earlier tractability issues arising with this dSM model over the

MP+_ 𝜏p model). The exponents a , b and m are dimensionless positive

onstants; all taken here as unity in the present implementation. Then,
f  

s  

197 
he steady-state structure-parameter 𝜆𝑠𝑠 is defined as: 

𝑠𝑠 

(
𝐼 𝐼 𝑫 

)
= 

ln 𝜂𝑠𝑠 
(
𝐼 𝐼 𝑫 

)
− ln 𝜂𝑠 

ln 𝜂𝑝 0 − ln 𝜂𝑠 
, (7) 

nd the steady-state viscosity 𝜂𝑠𝑠 is: 

𝑠𝑠 

(
𝐼 𝐼 𝑫 

)
= 
[ 
1 − exp 

( 

− 
𝐼 𝐼 𝑫 

𝜏0 

) ] [ 
𝜏0 − 𝜏0 𝑑 
𝐼 𝐼 𝑫 

exp 
( 

− 
𝐼 𝐼 𝑫 

�̇�0 𝑑 

) 

+ 
𝜏0 𝑑 

𝐼 𝐼 𝑫 
+ 𝐾𝐼 𝐼 𝑫 

𝑛 −1 
] 
+ 𝛽. 

(8) 

In Eq. (8 ) above, the dynamic and static yield-stress parameters are

0 and 𝜏0 𝑑 , respectively; �̇�0 𝑑 is the shear-rate that denotes the transition

etween 𝜏0 to 𝜏0 𝑑 . Then, K and n are consistency and power-law index,

espectively. In complex flow and according to common convention, the

eneralised second invariant of rate-of-deformation is taken as I I 𝑫 =
 

1 
2 𝑡𝑟 𝑫 

2 . Presently, 𝜏0 and 𝜏0 𝑑 are equated, simplifying the expression

or 𝜂𝑠𝑠 ( 𝐼 𝐼 𝑫 ) . One notes the physics here, that 𝜏0 𝑑 -variation influences

teady-state conditions through 𝜂 ( 𝐼 𝐼 ) , and hence 𝜆 ( 𝐼 𝐼 ) . This has
𝑠𝑠 𝑫 𝑠𝑠 𝑫 
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Fig. 8. First normal-stress difference N 1 against flow-rate Q and hardening level {NH, MH, SH}; BMP + _ 𝜏p , 𝛽 = 1/9. 
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mpact on the structure-parameter 𝜆, which influences viscosity through

ts index power of the polymeric viscosity 𝜂𝑝 ( 𝜆) = ( 𝜂𝑝 0 
𝜂𝑠 

) 𝜆 − 1 . 

.3. Material functions 

Fig. 1 Benchmark highly-polymeric 𝛽 = 1/9; BMP + _ 𝜏p model -

ardening comparison . Comparison across extensional-viscosity 𝜂Ext -

ardening response; No-Hardening (NH), Moderate-Hardening (MH)

nd Strong-Hardening (SH) fluids. Note that strain-hardening ( Fig. 1 a) is

ccompanied by increase in shear-stress- T rz levels ( Fig. 1 b), and through

rst normal-stress difference ( Fig. 1 c), in N 1 shear -plateaux at moderate-

o-high shear-rates. Such rheological response adjustment is driven via

he variation of thixotropic internal-structure parameters (see Figs. 1–4 ).

his is also patent on comparison across models (see on), when match-

ng N 1 Shear -plateaux and extensional viscosity peaks. 

Fig. 2 Polymer-concentration ( 1 − 𝛽)-variation ; BMP + _ 𝜏p model;

H matching 𝜂Ext -peak across solvent-fractions. Effects of polymer-

oncentration (1 − 𝛽)-variation in second-Newtonian plateaux are ex-
198 
osed, in both shear and extensional deformation ( Fig. 2 a). Across 𝛽-

hange, T rz only departs from its linear-trend at shear-rates 𝜆1 ̇𝛾∼3 units

 Fig. 2 b). In contrast and interpreted through polymer-concentration

1 − 𝛽)-increase, the low shear-rate quadratic -N 1 shear response, slightly

hifts to the left elevating early N 1 shear - response ( Fig. 2 c); whilst at

igher shear-rates, (1 − 𝛽)-rise provokes a shift to the right delaying

ater N 1 shear - response. At intermediate rates, fixed SH-features across

olymer-concentrations provide a common N 1 shear -plateau at ∼10 2 

nits. 

Fig. 3 a-b Comparison across BMP + _ 𝜏p and dSM models ; highly-

olymeric solvent-fraction 𝛽 = 1/9; NH, matching N 1 shear -inflection-

oints at intermediate shear-rates across models. Here in Fig. 3 a, 𝜂Ext -

ardening is suppressed and N 1 shear differences are exposed from 𝜆1 ̇𝛾∼1

nits onwards ( Fig. 3 b), from the viewpoint of a matching inflection-

oint at N 1 shear ∼0.5 units. From such a station and with rate-rise,

MP + _ 𝜏p provides for an extended N 1 shear -plateau response; whilst the

SM-form is more responsive, with immediate rise in N 1 shear . Fig. 3 c-

 data introduces strain-hardening/softening features through the MH
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Fig. 9. Upstream salient-corner vortex-intensity ( Ψsal ) against flow-rate Q ; BMP + _ 𝜏p ; solvent-fraction 𝛽-variation 𝛽 = {0.9, 0.8, 0.7, 0.5, 1/9}, SH fluids. 

Fig. 10. Streamlines against flow-rate Q and solvent-fraction 𝛽-variation 𝛽 = {0.9, 0.8, 0.7, 0.5, 1/9}, SH fluids; BMP + _ 𝜏p . 
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Fig. 11. Streamlines and N 1 against Q and 𝛽-variation 𝛽 = {0.7, 1/9}, SH fluids; BMP + _ 𝜏p . 
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Ext -setting (preserving model comparison and polymer-concentration).

n this case, a match to and consequence of an increased N 1 shear -

nflection-point ( ∼4.5 units) is sought ( Fig. 3 d). Notably in this instance,

he dSM approximation provides unbounded 𝜂Ext -response ( Fig. 3 c) –

ence, large extensional response would be anticipated in extensional

eformation. 

Fig. 3 e-f Comparison across BMP + _ 𝜏p and dSM models ; interme-

iate solvent-fraction 𝛽 = 0.7; SH, matching 𝜂Ext -peak across models

 Fig. 3 e). Here, significant N 1 shear differences are highlighted, in

erms of the level at which the inflection-point departs from the ini-

ial quadratic-trend ( Fig. 3 f). Comparing and contrasting response in

 1shear plateaux, BMP + _ 𝜏p N 1 shear plateaus over an extended rate-

ange (30 ≤ 𝜆1 ̇𝛾 ≤ 3 ×10 5 ); whilst dSM N 1 shear possesses a short plateau-

indow only, due to its relatively early rise at 𝜆1 ̇𝛾∼1 units. 

Fig. 4 BMP + _ 𝜏p and dSM models in the plastic regime To expose plastic

eatures, characteristic scaling on viscosity (and on stress, consequently)

s chosen based on the second-Newtonian plateau for both models. Re-

all in this work, yield-stress solid-like features are promoted - for dSM

odels, via the dynamic yield-stress parameter 𝜏0 𝑑 ; whilst BMP + _ 𝜏p 

odulates solidification through solute-concentration (1 − 𝛽)-increase.

ere, BMP + _ 𝜏p yield- stress features appear marked at extremely-high
200 
olymer content ( 𝛽 ≤ 1/9; as common yield-stress fluids appear exper-

mentally). This lies in distinct contrast to data in Figs. 1–3 , for which

he solvent-fraction 𝛽–change covers more dilute-fluids (1/9 ≤ 𝛽 ≤ 0.9),

epresentative of conditions for typical viscoelastic response at larger

ow-rates. In Fig. 4 , contrasting viscosity-response is observed with yield-

tress elevation across models. Considering shear and extensional vis-

osities ( Fig. 4 a and d), one notes that both BMP + _ 𝜏p and dSM models

isplay plastic features in the form of an apparent yield-stress, in which

 relatively large but finite first Newtonian viscosity-plateau is predicted

45,46] . Here, the level-separation between the first and the second

ewtonian plateaux for both models is over an order-of-magnitude dif-

erence. For dSM, 𝜏0 𝑑 -increase shifts the drop from their first Newtonian-

lateaux to larger deformation-rates ( Fig. 4 a). In contrast, BMP + _ 𝜏p re-

ponse is witnessed through a significant rise in the first Newtonian-

lateau ( Fig. 4 d). These conspicuous differences are reflected in shear-

tress T rz patterns observed at low rates. BMP + _ 𝜏p T rz patterns branch

ut at low deformation-rates and rise with (1 − 𝛽)-increase ( Fig. 4 e).

n contrast in Fig. 4 b, dSM forms reflect unified closed-patterns at low

ates (still lower 𝜏0 𝑑 would not substantially alter this position). With

0 𝑑 -rise and at larger shear-rates, such an unified initial linear response

radually weakens; so, for example, departure occurs at a relatively ear-
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Fig. 12. Salient-corner vortex-intensity ( − Ψsal ) against flow-rate Q ; dSM match of N 1 Shear -inflection-point( ip ), 𝛽 = 1/9-{NH, MH} fluids: a) upstream, b) downstream; 

c) BMP + _ 𝜏p v dSM 𝜂Ext -peak match, { 𝛽 = 0.7, SH} fluids. 
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ier { 𝜆1 ̇𝛾∼0.30 units, 𝜏0 𝑑 = 0.02}, whilst non-linearity is observed at the

hear-rates of { 𝜆1 ̇𝛾∼1 units, 𝜏0 𝑑 = 1} ( Fig. 4 b), thus sustaining tougher

uids (with relatively larger stresses) at larger deformation-rates with

ynamic yield-stress 𝜏0 𝑑 -rise. Response in first normal-stress difference

n shear N 1 Shear follows likewise, with branching-patterns at low rates

or BMP + _ 𝜏p , but not dSM. Yet, worthy of note at intermediate shear-

ates, is the exaggerated dSM N 1 Shear non-linearity and strength pro-

oted via 𝜏0 𝑑 -increase ( Fig. 4 f). In contrast, BMP + _ 𝜏p (1 − 𝛽)-increase

t these same intermediate shear-rates provokes constant plateaux, with

ver-rising levels ( Fig. 4 c). 
201 
. Flow domain, boundary conditions, VGR-correction and fe − fv

cheme 

The flow domain is a circular contraction-expansion of aspect-ratio

= 10, with sharp-corners. This geometry has been selected due to its

trong potential to promote interesting and varied vortex structures at

arger flow-rates, and to detect the impact that the present rheological

ifference across models has on these structures. Details in mesh char-

cteristics can be found in [13] . In order to attain predictive solutions

n such highly non-linear situations (recall the extremely low solvent-
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Fig. 13. Streamlines and N 1 against Q ; dSM v BMP + _ 𝜏p ; a) 𝛽 = 1/9, NH fluids; b) 𝛽 = 1/9, MH fluids; c) 𝛽 = 0.7, SH fluids. 
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ractions of 𝛽 ≤ 10 − 2 and high flow-rate Q -requirements), the stability-

nhancing ABSolute f -functional ( ABS - f ) correction and the Velocity-

radient Recovery ( VGR ) correction are found necessary. Here, ABS - f

orrection enhances numerical tractability through regularisation, by

nforcing consistent material property estimation (following the Sec-

nd Law of Thermodynamics; [5–8] ). The ABS - f -correction acts within

he constitutive equations, adopting the absolute value of the network-

tructure f -functional (often used to define macroscopic properties; as in

on-Newtonian viscosity and non-Hookean elastic modulus [27] ). This

orrection procedure finds general applicability, for example - through

he dissipation-function in Bautista–Manero fluids, or in other mod-

ls through the trace of polymeric-stress, as in PTT and FENE models

5] . There, use of ABS - f -correction gave an increase of three orders-of-

agnitude in critical Weissenberg number solution attainment. Then,

GR -correction imposes shear-free inhomogeneous uniaxial-extensional

eformation along the centreline through its velocity-gradient compo-

ents, in addition to a generalised continuity-conservation condition

hat is satisfied exactly throughout the flow domain (see also [47–

0] more generally for velocity-gradient recovery implementation and

rocedures). Such a VGR-correction strategy prevents proliferation of

umerical discretisation error, originating from the evolving symmetry-

ine solution, and its amplification with the strengthening of non-

inearity (in this case, promoted by flow-rate, polymer-concentration

nd yields-stress increase; [5–8] ). 

The increasing- Q protocol itself demands some care with respect to

ccurate boundary condition implementation between subsequent flow-

ates, which is affected by the strong shear-thinning features of highly-

olymeric fluids in the moderate-to-high flow-rate regime. Hence, to

nsure consistency between the outlet (also inlet) boundary and its corre-

ponding internal-field neighbourhood , a regional-solution outlet-feedback
202 
also inlet-feedforward) procedure is performed per time-step. This is

mplemented on polymeric-stress 𝝉𝑝 and velocity-gradient ∇ 𝒖 solution-

omponents [8] , extracting overwrite nodal-values from fully-developed

ocations downstream (or upstream) of the obstruction, as appropri-

te. During the continuation incrementation-procedure through steady-

tate Q -solutions, the streamwise v elocity 𝑢 𝑧 boundary condition is han-

led by an initial feedback-feedforward step at the outset of each new Q -

olution stage [8] . In this, an internal-domain fully-developed 𝑢 𝑧 -profile

s taken from a previous (but close) steady-state Q -solution, subse-

uently rescaled accordingly, and then set at inlet-outlet locations for

he present flow-rate solution. This procedure is equivalent to setting

teady-simple shear flow boundary conditions at each flow-rate. More-

ver, such u z -profile rescaling implies a change in the characteristic ve-

ocity U per flow-rate Q , and accordingly, via 𝑊 𝑖 = 𝜆1 𝑈∕ 𝐿 = 𝜆1 
𝑄 

𝜋𝐿 3 
, a

ifferent associated Wi -level. 

Hybrid finite element/finite volume scheme This hybrid space-time

lgorithmic scheme has time-stepping and fractional-staged equation

tructure, see [47–50] . Finite-element ( fe ) discretisation is invoked on

he momentum-continuity equation doublet of incremental pressure-

orrection form, whilst finite-volume ( fv ) discretisation is instigated

n the constitutive stress-equation. This choice respects equation-

ype specification. Hence, Galerkin-type ( fe ) specification is selected

or momentum-continuity on triangular tesselations, with subtended

ubcell/cell-vertex finite-volume ( fv ) discretisation for stress. This leads

o a space-efficient element-by-element iterative solution procedure

or all but the pressure-equation, which itself is resolved with a di-

ect Choleski-reduction method. The ( fv ) component for stress, then

ollapses into a direct single-iteration implementation. The temporal

onservation-form equation for stress is non-linear with inhomogeneous

ource terms, and as such requires both fluctuation-distribution for
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uxes (upwinding) and median-dual-cell treatment for source terms.

n the parent fe triangular - cell grid, velocity interpolation is quadratic,

longside linear interpolation for pressure. Then, the subtended sub-

ell fv -triangular-tessellation is constructed by connecting the mid-side

odes of the parent cells (four subcells per parent cell). In such a struc-

ured tessellation, stress variables are located at the vertices of fv -sub-

ells and hence solution interpolation between various equation stages

s avoided. This provides for a subcell-vertex fv -method, equivalent to

inear interpolation on trial-solutions, but at the child subcell-level. The

orresponding schema developed is second-order accurate and consis-

ent in time [48, 49] . 

. Results 

As depicted in Fig. 5 and for illustrative purposes, the findings of this

esearch work have been sectioned into two flow-regimes: a viscoelastic

egime and a plastic regime. Section 4.1 Viscoelastic Regime is focused

n the fluidised response with relatively diluted fluids (1/9 ≤ 𝛽 ≤ 0.9)

nd high flow-rates ( Q ≥ 1). As a main finding, representation of the

iscoelastic response is provided in Fig. 5 a, where rich flow-structural

treamlines (portraying coexistence of salient-corner and lip vortices)

ntimately correlate with its counterpart normal-stress field, and whose

ntensity appears correlated to rotational vortex-intensity (see on). 

Section 4.2 Plastic Regime deals with the solid-like features of the vis-

oelastoplastic fluids studied. In contrast to the viscoelastic regime, the

lastic regime explores the plastic response of dSM and BMP + _ 𝜏p mod-

ls under extremely solute-concentrated fluids ( 𝛽 ≤ 1/9) and relatively

ow flow-rates ( Q ≤ 10). Here in Fig. 5 b, illustration of such response
203 
ppears through yield-fronts, made asymmetric due to fluidisation and

iscoelasticity. 

.1. Viscoelastic regime – variation in moderate-to-high flow-rates Q and 

olymer-concentration (1 − 𝛽) 

.1.1. BMP + _ 𝜏p Predictions; flow-structure and stress-response 

.1.1.1. Comparison across hardening levels –NH, MH and SH; highly-

olymeric ( 𝛽 = 1/9) under Q-increase. Here, a main observation has been

hat vortex-phasing is found to be dictated through trends in extensional

iscosity. In particular, this lies in agreement with previous findings for

oger fluids [12,13] . In this manner, and by adopting Q -increase as the

ontinuation mode between steady-states, the gradual evolution from

 salient-corner ( sc ) vortex-pattern is seen to develop into one of an

lastic-corner ( ec ) vortex-pattern (see [13,51] ). Such an elastic-corner

ortex is commonly observed at high flow-rates, where elastic features

ominate and this strong kinematic flow-structure occupies the whole

f the corner-recess (see vortex-intensity Ψsal -plots and streamlines in

igs. 6 and 7 , respectively). Counterpart fields of the first normal-stress dif-

erence in complex flow N 1 ( Fig. 8 ) overall reflect the vortex-phasing and

nternal vortex-structures formed. Moreover, internal vortex-structure

evelopment and spatial location is closely related to build-up observed

n N 1 Shear (due to the close proximity of the vortex to the wall [13] ). Ex-

rema (and colouring) provide a pointer to the localised influence and

 1 -structures in the recess-corner flow. 

Vortex-intensity across hardening-cases Vortex-intensity Ψsal -plots are

resented in Fig. 6 . Across the various hardening-options, 𝜂Ext -hardening

egregates the rotational-strength of the upstream vortex into three dis-

inct levels. The corresponding field representation of such kinematic-
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tructures, both in streamline patterns and N 1 -fields, is provided in

igs. 7 and 8 , respectively. Upstream of the contraction , plateauing Ψsal -

rends are retrieved in No-Hardening (NH) and Moderate-Hardening

MH) cases, whilst Strong-Hardening (SH) Ψsal -rises sharply ( Fig. 6 a).

H and MH plateaux differ by an order-of-magnitude in intensity, from

H Ψsal ∼0.012 units, to MH Ψsal ∼0.14 units. Moreover, greater hard-

ning retards the approach in take up of a plateau. For instance, NH

lateaus at Q ∼2, whilst MH softens its slope at Q ∼3, and SH invariably

ises. Within such levelling and evolution with Q -rise, NH-solutions re-

ort some degree of asymmetry for Q ≥ 0.5, followed by vortex-retreat

nto the salient-corner (see streamline patterns in Fig. 7 and counter-

art 2D N 1 -field in Fig. 8 ), and ultimately at high- Q , to symmetric

nd significantly reduced vortices at Q ∼25. In contrast, under MH-

olutions , marked asymmetry emerges in the range 0.5 ≤ Q ≤ 1 (elon-

ated upstream-vortices and downstream–vortex shrinkage in Fig. 7 ,

ith intensification in normal-stress response – indicated in colour tran-

ition to yellow-levels in Fig. 8 ). Then at Q ∼5, a plateau is recorded

n vortex-size ( Figs. 7 and 8 ; also observed in Ψsal , see Fig. 6 a-top-

ight), followed by retreat into the salient-corner, producing asymmet-

ic vortex-patterns by Q ∼25. The SH-solution-set with sustained Ψsal -

ise, attains a striking maximum Ψsal ∼2.3 units at Q = 10 (see in-

et Fig. 6 a). The SH-flow-structure displays exaggerated asymmetry,

ith extreme upstream-vortex growth and N 1 -enhancement towards the

e-entrant corner (of elastic-corner vortex-type), where the rotation-

entre is shifted ( Figs. 7 and 8 ). Note that for Q = 10 SH-solution (last

ractable), N 1 -enhancement is witnessed by a yellow/intense-positive

ortex-like structure, that is detached from the contraction back-face by

 blue/intense-negative peak. One notes, this N 1 -overshoot-undershoot

eature has already been reported for Boger fluids, in the elastic-corner

ortex-evolution phase [13] . One may note that across the various hard-

ning instances considered, SH develops a strong red/intense-zone in the
a  

204 
ontraction-gap, which is weakened under MH, and absent altogether

nder NH-setting (in agreement with N 1 -extrema in Fig. 8 ). 

Across hardening-variants , the upstream-vortex evolution with Q -rise

ay be clearly linked with fluid-response in ideal deformation. Hence,

or the NH-fluid , the trend of continual vortex-retreat may be correlated

ith NH strain-softening properties, whilst also being devoid of any

anifestations of hardening (see Fig. 1 a); additionally, reduced sym-

etrical vortices at high- Q are related to the relatively low N 1 Shear -levels

 Fig. 1 c). For the MH-fluid and with strain-rate rise, the initial vortex-

rowth and delayed retreat correlate well with the moderate strain-

oftening/hardening 𝜂Ext -response ( Fig. 1 a); whilst the asymmetric vor-

ices at large flow-rates may be due to the increased MH N 1 Shear -levels

 Fig. 1 c). Once more, one may recall our earlier findings, where inter-

al vortex-activity matched with N 1 Shear , due to vortex proximity to the

all [13] . For these two NH and MH instances, the attainment of a second

ewtonian-plateau regime is conspicuous ( Figs. 7 and 8 ) . Notably, this po-

ition generates diminished upstream-vortices, which return to salient-

orner forms, whilst adopting asymmetrical orientation about the ob-

truction and manifesting N 1 Shear -strength. Finally, the exaggerated SH

symmetry and elastic-corner vortex formation are in-line with the se-

ere strain-hardening and N 1 Shear features of this SH fluid ( Fig. 1 a and

). 

The relatively reduced-activity in downstream-vortices is also worthy

f note. In the largest illustration of departure (SH-case), the upstream

ortex-activity is two to three orders-of-magnitude more intense than

hat downstream of the constriction ( Fig. 6 ). In terms of flow-structure

nd with Q -rise, downstream-vortices balance the upstream activity,

y simply shrinking into the salient-corner, whilst increasing in in-

ensity. These observations lie in distinct contrast to the counterpart

henomena revealed experimentally for Boger fluids (high-solvent frac-

ions, constant shear-viscosity and significant elasticity [13] ). There,

nd for constant-viscosity highly-elastic fluids, upstream-vortex en-
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a  
ancement is attended at larger rates by similar downstream vortex-

ctivity (with even downstream lip-vortex formation found in larger

spect-ratios 𝛼 ≥ 6; [13] ). In addition, in Fig. 6 b and with respect to up-

tream observations, an inversion of downstream Ψsal -trend-ordering is

ecorded. Here, NH downstream-vortices rotate with the largest strength

hilst SH-vortices recirculate with the weakest. Under Q < 20, down-

tream NH-vortices rotate more quickly ( Ψsal_avg ∼0.0034 units), than

hose of MH ( Ψsal_avg ∼0.0024 units), and those of SH in the range at

 < = 5 ( Ψsal_avg ∼0.0014 units). Finally at relatively large flow-rates, all

ardening-cases display a sudden Ψsal -rise. 

.1.2. Variation in polymer-concentration (1 − 𝛽) 

Vortex-intensity with polymer-concentration ( 1 − 𝛽)-variation A range

f solvent-fractions of 𝛽 = {1/9, 0.5, 0.7, 0.8, 0.9} is studied (upstream

ortex-intensity Fig. 9 ; streamlines- N 1 Figs. 10 and 11 ; ideal response

n Fig. 2 ), under strong hardening SH-conditions, principally with focus

pon vortex-phasing ( lip-vortex formation) . 

Under polymer-concentration ( 1 − 𝛽)-increase , vortex-intensity Ψsal is

eflected in Fig. 9 . In general and upstream of the contraction, solute-

ontent (1 − 𝛽)-increase elevates the intensity of vortex rotational-speed

nd segregates response. With Q -rise, Ψsal appears flatter in solvent-

ominated fluids ( 𝛽 = 0.9), whilst it sharply rises for highly-polymeric

uids ( 𝛽 = 1/9). This is accompanied by a change in vortex-cell shape and

raversal of rotation-loci (see last column of Fig. 10 ). As described un-

er hardening-changes above, diminished downstream -activity appears

o balance that in the upstream of the contraction, only adjusting with

1 − 𝛽). 

For solvent-dominated fluids ( 𝛽 = 0.9), vortex- intensity Ψsal rises shal-

owly, levelling at Ψsal ∼0.015 units at Q ∼10 ( Fig. 9 ). Streamline patterns

isplay a retarded upstream-response (first column of Fig. 10 ), with sym-

etrical salient-corner ( sc ) vortices in the range 0.1 ≤ Q ≤ 1, followed

pon further Q -rise (2 ≤ Q ≤ 10) by delayed sc -vortex-elongation. 

With ( 1 − 𝛽)-increase, yet still within the diluted-regime ( 𝛽 = {0.8, 0.7}) ,

sal is seen to somewhat enhance with Q -increase; in the largest- Ψsal 

ecorded ( 𝛽 = 0.7, Q = 10), Ψsal is some 4.5-times larger than that ob-

erved in the solvent-dominated 𝛽 = 0.9-case ( Fig. 9 ). Conspicuously, in

erms of vortex-structure (second and third columns of Fig. 10 ), after

nitial symmetrical streamline (0.1 ≤ Q ≤ 1; somewhat distorted with in-

rease in polymer-concentration), intermediate phases of salient-corner

 sc )/lip-vortex ( lv ) coexistence are recorded (1 ≤ Q ≤ 4). Notably, within

he high-Q range of Q ≥ 5, each 𝛽 = {0.8, 0.7} solution-set has an alter-

ative and different response to Q -rise ( Fig. 10 ). Under 𝛽 = 0.8, the co-

xistent sc- lv structures coalesce, and a single sc -vortex is recovered.

n contrast, at slightly increased polymer-concentration ( 𝛽 = 0.7), the lv

ominates and becomes an elastic-corner (ec) vortex . 

Finally under highly-polymeric fluids ( 𝛽 ≤ 0.5) , a steep Ψsal -rise is

ecorded with incrementation in flow-rate ( Fig. 9 ). The increase in ro-

ational intensity is such that, at Q = 10, 𝛽 = 1/9-upstream rotational-

ntensity ( Ψsal ∼2.29 units) is some 230-times stronger than that under

he solvent-dominated 𝛽 = 0.9-fluid ( Ψsal ∼0.01 units) at the same flow-

ate. With Q -rise, such strong ( 𝛽 ≤ 0.5)- Ψsal behaviour is reflected in a

irect transition from salient-corner (sc)- to elastic-corner (ec)-vortex for-

ation (last two columns of Fig. 10 ). 

The correspondence of flow-structure, through vortex-activity to

ormal-stress development, is illustrated in Fig. 11 . Here, the most

ctive instance of 𝛽 = 0.7 is selected for illustration purposes, where

alient-corner/lip vortex coexistence is strongly evident. In the 1 ≤ Q ≤ 4

ange, N 1 -fields possess isolated zones in the corner/back-face region,

hich correspond to counterpart streamline vortices. For 1 ≤ Q ≤ 3, up-

tream salient-corner and lip-vortex-like N 1 -patterns are clearly appar-

nt, attended with the corresponding downstream salient-corner N 1 -

tructures. Upstream and for Q = 4, an elongated N 1 -structure with two

entres of rotation is retrieved; one less-intense, located at the salient-

orner, and a second more-intense near the lip; this intense lip-vortex

tructure announces the onset of lip-vortex domination. 
205 
.1.3. BMP + _ 𝜏p vs dSM predictions: Flow structure 

The present theme continues to report on contrast in solution re-

ponse when considering variation across constitutive models, namely

hrough differences observed when appealing to dSM representation

gainst the foregoing BMP + _ 𝜏p form. Three separate instances of promi-

ent rheological distinction are identified. The first comparison is taken

nder highly-polymeric 𝛽 = 1/9 and no hardening NH-response, when

atching N 1 Shear -inflection-points. Then, the second comparison under

oderate hardening MH-response, preserves the match in 𝛽 = 1/9 and

 1 Shear -inflection-point match. The third comparison under strong hard-

ning SH-response, matches extensional viscosity 𝜂Ext -peaks at inter-

ediate solvent-fraction ( 𝛽 = 0.7; diluted-fluids). In terms of material-

unction response and under { 𝛽 = 1/9, NH}, one observes the effects

f N 1 Shear -rise with shear-rate increase ( Fig. 3 a-b). With { 𝛽 = 1/9,

H}, strain-hardening/softening influence is analysed ( Fig. 3 c-d). Lastly

 𝛽 = 0.7, SH} setting, exposes the effects of N 1 Shear -differences under

tronger solvent presence (see Fig. 3 e-f). 

.1.3.1. dSM NH-MH-fluids N 1 shear -plateaux matching (highly-polymeric

= 1/9). In Fig. 12 a and for complex contraction-expansion flow,

ortex-intensity (- Ψsal )-plots are presented, contrasting NH and MH-

nstances (corresponding to the match in N 1 Shear inflection-points; see

ig 3 a–d). Upstream and with Q -rise, NH- Ψsal plateaus at Ψsal ∼0.05 units

 Q ∼10), whilst MH- Ψsal rises severely. These two distinct trends may be

ligned with the NH and MH 𝜂Ext -response, for which NH barely dis-

lays hardening at intermediate strain-rates (see Fig. 3 a); whilst MH

isplays unbounded response ( Fig. 3 c). Streamline-patterns reflect these

ontrasting positions under extension. Under NH , dSM approximation

xhibits stronger asymmetry than BMP + _ 𝜏p predictions ( Fig. 13 a). Such

olution response is synchronised with a stronger response in normal-

tress (compare N 1 -extrema across models at fixed- Q ; Fig. 3 b). No-

ably, beyond Q > 5 in Fig. 13 a, upstream-vortex retraction into the re-

ess corner is gathered, in accord with the strain-softening nature of

hese NH-fluids (see Fig. 3 a). In the high- Q regime ( Q = 25), dSM sharp-

symmetrical vortex-structures contrast with BMP + _ 𝜏p symmetrical-

esponse ( Fig. 13 a). Such disparity is consistent with dSM stronger

lastic-response, with dSM N 1 max being some four times larger than

hat of BMP + _ 𝜏p ( Fig. 3 b). Once some strain-hardening has been intro-

uced , dSM MH responds through intensely large- N 1 zones around the

onstriction-region (see Fig. 13 b). Recall that dSM has an unbounded

xtensional response, when matching N 1 shear -inflection-points with the

H-BMP + _ 𝜏p fluid ( Fig. 3 c). Consistently, dSM N 1 -extrema grow by an

rder-of-magnitude above and relative to that for BMP + _ 𝜏p . Through Q -

ise, such contrasting extension-driven dSM response, is accompanied by

he early development of an elastic-corner vortex; as opposed to that un-

er BMP + _ 𝜏p of vortex-enhancement and subsequent vortex-retraction.

nterestingly, now downstream, NH- Ψsal rises continually ( Fig. 12 b ) ;

hilst MH- Ψsal firstly rises in the 0 < Q ≤ 2 range, locating a maximum

f vortex-intensity of - Ψsal ∼0.0012 units at Q = 2; then beyond Q = 2, a

radual Ψsal decline is observed, to reach an ultimate plateau-level of

sal ∼0.0006 units. 

.1.3.2. Strong-hardening (SH) fluids, intermediate solvent-fractions

 𝛽∼0.7). Fig. 13 c { 𝛽 = 0.7, SH} 𝜂Ext -peak match – comparison of

ip-vortex formation and exposition of N 1 - effects. This preliminary

xamination of representative dSM response now lies in stark contrast

o that discussed above for BMP + _ 𝜏p solutions (in Fig. 3 e). Under such

olvent-fraction setting and hardening intensity, Q -increase BMP + _ 𝜏p 

olutions disclose an intermediate salient-corner ( sc )/lip-vortex ( lv )

oexistence phase, followed by elastic-corner vortex formation. In con-

rast and even from early flow-rates of Q = 0.1, dSM solutions develop

symmetry and much stronger upstream elastic-corner (ec) -vortices.

his departure is strikingly observed in vortex-intensity trends of

ig. 12 c. Here, dSM Ψsal -rises steeply from low flow-rates, in contrast

o the relatively softer BMP + _ 𝜏p -trend. For instance, at Q = 3 dSM- Ψsal 

ttains a level of ∼0.08 units, which is some eight times larger than
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Fig. 14. Yield fronts against Q and yield-stress; a) dSM ( 𝜏0d -increase; 𝛽 = 1/9), b) BMP + _ 𝜏p ( 𝛽-increase); MH fluids. 
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he intensity retrieved for BMP + _ 𝜏p -solution ( Ψsal ∼0.01 units). Then,

uch stronger dSM response is also reflected in N 1 -field structure and

evelopment, for which elongated upstream vortex-like structures

merge ( Fig. 13 c). Comparatively at each Q -level studied, dSM N 1 -

xtrema are significantly enhanced, as gathered through corresponding

ed/intense-regions across the contraction-gap, which are stronger and

arger than those equivalent for BMP + _ 𝜏p . The final tractable dSM

teady-state solution to be extracted is that at Q = 3. One may associate

he considerably stronger dSM response, noted in ideal shear (reduced

hear-thinning) and extension (SH), with this earlier loss in solution

ractability against that for BMP + _ 𝜏p . 

.2. The plastic regime-low flow-rates ( Q ≤ 10) and extremely high 

olymer concentrations ( 𝛽 ≤ 1/9); moderate hardening MH-fluids; exposure

o yield-stress influence - dSM ( 𝜏0 = 𝜏0d -increase) against BMP + _ 𝜏p 

 𝛽-decrease) 

.2.1. Yield-fronts 

dSM solutions in the form of yield-fronts are illustrated in Fig. 14 a,

pon selecting the highly-polymeric concentration ( 𝛽 = 1/9) to establish

 common comparison-basis with BMP + _ 𝜏p predictions . The criterion

o discern the yield-front (interface between yielded fluid and non-yielded

olid-like material) is derived through the second invariant of polymeric-

tress, 𝐼 𝐼 𝝉𝑝 = 

√ 

1 
2 𝑡𝑟 𝝉

2 
𝑝 
; as such, stress levels greater than or equal to the

 𝐼 𝝉𝑝 
-threshold correspond to yielded-fluid zones (see [29] for this and

ther valid measures to discern yield-fronts). At fixed Q = 1 and under

ield-stress parameters 𝜏0 = 𝜏0d = 0.02, an X-shaped yield-front region

s identified. This asymmetrical pattern about the contraction-plane, is
206 
etrieved from imbalanced unyielded-zones in the recess-corners. Sub-

equent and rising yield-stress influence ( 𝜏0d ≥ 0.05), renders shrink-

ng double-claw/shamrock-shaped unyielded regions, which are con-

ned to the contraction-gap neighbourhood. Conversely, with Q -rise,

 sequence of fixed- 𝜏0d = 0.1 solutions, commence from a symmetri-

al eight-petal/branched and yielded-structure, which is confined to

he constriction-zone. Then, at an intermediate Q -range (0.5 ≤ Q ≤ 1),

he eight-petal structure gives way to a four-petal/shamrock-shaped

nyielded-zone. Finally, at relatively high- Q ( Q ≥ 5), the ever expand-

ng yield-fronts of the contraction-flow zone, link-up with those from

he upstream-wall and downstream-wall flow regions. At this juncture,

lastic-effects become prominent (recall, rising N 1 Shear material-function

esponse; Fig. 3 d), with larger asymmetrical upstream yielded-zones ap-

earing in the corner-recess regions. 

Comparatively, across models and at low flow-rates, BMP + _ 𝜏p solu-

ions ( Fig. 14 b) reveal similar yield-front response to that of dSM. In con-

rast however, at higher flow-rates ( Q > 5) and extremely low solvent-

ractions ( 𝛽 ≤ 0.005), ever expanding yielded-regions are recorded,

hat are slightly more prominent with BMP + _ 𝜏p than dSM repre-

entation, showing marked asymmetrical unyielded-zones in the re-

ess corners. One comments that, under BMP + _ 𝜏p and with rise in

olymeric-concentration - at low flow-rates , plastic features are pro-

oted (see Fig. 14 b Q ≤ 5 solutions); whilst, at sufficiently large flow-

ates , pronounced shear-thinning is provoked, resulting in expanded

uid-response type regions (see Q = 10 fields). 

One may gather observations at larger- Q, equivalent to intermedi-

te deformation-rates, as the interface between the low-Q plastic-regime

nd the high-Q viscoelastic-regime . There, thixo-viscoelastic non-linearity
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Fig. 14. Continued 

i  

f  

m  

l  

i  

t  

o  

(  

N  

t  

i  

s  

c  

i  

t  

T  

a  

e  

o  

t  

l  

t  

l  

d  

c  

t  

F  

t  

t  

e  

c  

w  

c  

t

4

 

d  

m  

r  

a  

fi  

s  

Q  

{  

C  

Δ  

o  

c  

Q

s  

1 Further studies on thixotropic response of viscoelastoplastic materials will 

appear subsequently in the current setting of 𝛼= 10 sharp-cornered circular 

contraction-expansion flow (transient solutions) and flow past sphere (match 
s manifest, through increasing N 1 Shear -levels and asymmetrical yield-

ronts. The relatively reduced dSM asymmetry in yield-fronts at inter-

ediate flow-rates, may be correlated with the relatively low N 1 Shear -

evels apparent under the 𝜏0d -range chosen. This is illustrated via dSM

deal-deformation solutions in Fig. 4 c with 0.1 ≤ N 1 Shear ≤ 20; in con-

rast to the BMP + _ 𝜏p solutions in Fig. 4 f with 10 2 ≤ N 1 Shear ≤ 10 4 . More-

ver, at larger yield-stress levels and at intermediate shear-rates, dSM-

0.5 ≤ 𝜏0d ≤ 1) N 1 Shear -curves decline ( Fig. 4 c), whilst BMP + _ 𝜏p sustains

 1 Shear -plateaux ( Fig. 4 f). As a consequence, one can devise three ways

o enhance dSM nonlinear-response parametrically: (i) Q -increase (driv-

ng predictions towards a liquefied viscoelastic-response), (ii) yield-

tress 𝜏0d -increase (enhancing nonlinear N 1Shear -response) and (iii) in-

rease in polymer-concentration (1 − 𝛽). Nevertheless, one should bear

n mind the highly non-linear dSM response, observed for example, in

he dynamic yield-stress 𝜏0d -level increments demonstrated in Fig. 4 c.

here, at relatively low- 𝜏0d , in the range 0.02 ≤ 𝜏0d ≤ 0.1, the onset of

 N 1 Shear -plateau is apparent, and achieved with 𝜏0d = 1.0. This cov-

rs the shear-rate range 0.5 ≤ 𝜆1 ̇𝛾 ≤ 3 units, which is prior to the sec-

nd N 1 Shear -upturn at higher rates. Notably, for relatively high- 𝜏0d in

he range 0.5 ≤ 𝜏0d ≤ 1, N 1 Shear -maxima are recorded at 𝜆1 ̇𝛾∼O(1); fol-

owed by N 1 Shear -drop that extends out to shear-rates 𝜆1 ̇𝛾∼O(10 2 ); prior

o recovering quadratic-slope in N 1 Shear . Hence, to amplify dSM non-

inear features in complex flow, one plausible option is to extend pre-

ictions to higher flow-rates- Q in the ( 𝜏0d = 0.1)-case of Fig. 4 c. This

ase displays a rising monotonic N 1 Shear -curve, with yield-front patterns

hat already display some asymmetry about the contraction-plane, see

ig. 14 a (5 ≤ Q ≤ 10). One may note that analysis of thixotropic features

hrough variation of thixotropic construction-destruction parameters on

o

207 
op of the viscoelastoplastic response of these models has been already

xplored in [6,7] , in the context of viscoelastoplastic flow in rounded-

orner 𝛼 = 4 circular contraction-expansion geometries. There, in accord

ith the findings reported in the present work, asymmetry about the

ontraction-plane was recorded with variation of thixotropic parame-

ers. 1 

.2.2. Pressure-drops 

In Fig. 15 and under increasing yield-stress influence, total pressure-

rop Δp total -trends are plotted against rising flow-rate for both proposed

odels. This provides contrasting response across models, in terms of

espective levels of pressure-drop reached. Here, dSM Δp total generates

 relatively tight-window of response under increasing- 𝜏0d . ( Fig. 15 a,

xed- 𝛽 ( = 1/9)). This lies in stark contrast with the wide-window of re-

ponse for BMP + _ 𝜏p solutions under decreasing- 𝛽. For instance, a t fixed

 = 10, the extremities of the dSM pressure-drop window lie within

 𝜏0d , Δp total } = {0.02, 358} units and { 𝜏0d , Δp total } = {1, 512} units.

omparatively, BMP + _ 𝜏p Q = 10-solutions ( Fig. 15 b) span-out from { 𝛽,

p total } = {1/9, 400} units to { 𝛽, Δp total } = {5 ×10 − 3 , 5755} units. More-

ver, extremely polymer-concentrated BMP + _ 𝜏p solutions ( 𝛽 = 1 ×10 − 3 )

an reach total pressure-drop levels as high as Δp total = 20,923 units at

 = 5 (see Fig. 15 b-inset). With Q-elevation , both dSM and BMP + _ 𝜏p 

olutions display an initial sharp-rise at relatively low flow-rates, fol-
f experiements). 
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Fig. 15. Total pressure drop against Q ; dSM ( 𝜏0d -increase; 𝛽 = 1/9) v BMP + _ 𝜏p ( 𝛽-increase); MH fluids. 
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F  

p  

a  

r  

c  
owed by a continual slope-decrease. Nevertheless, the most highly

olymer-concentrated case, ( 𝛽 = 1 ×10 − 3 )-BMP + _ 𝜏p , rises rapidly with

 -increase, and barely displays slope weakening ( Fig. 15 b-inset). Re-

all, plastic-features (and hence total pressure-drop) are enhanced under

SM 𝜏0d -increase, and likewise, BMP + _ 𝜏p performs analogously under

olymer-concentration (1 − 𝛽)-increase. From Fig. 4 , one can gather the
208 
heological justification for such contrasting behaviour in pressure drop.

or BMP + _ 𝜏p , polymer-concentration increase elevates first Newtonian-

lateaux ( with fixing on common second plateau ), both in simple-shear

nd uniaxial extension. This is reflected in shear-stress T rz , through

ising branching patterns observed at low deformation-rates, with in-

rease in polymer concentration. In contrast, dSM 𝜏0d -increase only af-
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ects shear-stress at relatively larger deformation-rates (change noted to

ommence at 𝜆1 ̇𝛾∼0.3 units). Under dSM approximation, there is unifi-

ation in shear-stress at smaller shear-rates, reflected in a common first

ewtonian plateau. 

. Conclusions 

This study has facilitated comparative prediction for two new

ersions of thixotropic and viscoelastoplastic models, under circular

harp-cornered contraction-expansion flow with aspect-ratio 𝛼 = 10.

wo main flow-regimes have been examined in detail under a flow-

ate Q -incrementation procedure: firstly, under viscoelastic-response , in

he high-Weissenberg setting and relatively diluted fluids; and sec-

ndly, under plastic-response , where predictions are explored for ex-

remely solute-concentrated fluids and relatively low flow-rates. The

iscoelastic-response regime covers the range of (0.1 ≤ Q ≤ 25) solu-

ions and with various polymer-concentrations (0.1 ≤ (1 − 𝛽) ≤ 8/9). The

lastic-response regime of extremely concentrated fluids covers the

ange of ((1 − 𝛽) ≥ 8/9) in the range ( Q ≤ 10). 

In terms of the thixotropic and viscoelastoplastic constitutive models

mployed, the proposed BMP + _ 𝜏p model possesses the complete set of

eatures inherited from earlier variants; that is, bounded extensional-

iscosity response and rising first normal-stress difference at high de-

ormation rates. This rheology exposes an intimate and explicitly dy-

amic interaction between elasticity and fluid-structure. Such features

re typically observed under experimental conditions in the rheology

f wormlike micellar and polymeric solutions. The de Souza Mendes

dSM) model considered is the particular variant proposed in [7] , cou-

led with the correction in the fluid-structure equation proposed by

11] . Such a time-dependent constitutive equation provides attractive

ormal-stress response in simple shear, with highly non-linear N 1 Shear -

rends through shear-rate rise; particularly, this dSM model variant dis-

lays a relatively narrow N 1 Shear -plateau at moderate shear-rates, from

hich a second-upturn branch is gathered. Nevertheless, for greater

olymer-concentration instances ( 𝛽 = 1/9), the dSM model may exhibit

nboundedness in its extensional viscosity (dependent upon yield-stress

arameters, 𝜏0 and 𝜏0 𝑑 ). 

Under the viscoelastic regime and for highly-polymeric fluids

 𝛽 = 1/9), striking correlation is observed between flow-structure de-

ived (both in streamline and first normal-stress patterns; 0.1 ≤ Q ≤ 25)

nd their respective intensities, with strength of hardening in extensional

iscosity 

a) Micellar-based BMP + _ 𝜏p : With flow-rate Q -increase, a rich flow-

structure evolution is gathered. The strength of hardening drives the

kinematical structures appearing and their intensity. Micellar flu-

ids devoid of hardening (no hardening NH) evolve into symmetri-

cal and relatively weak salient-corner flow-structures. When some

extensional hardening is introduced by the variation of thixotropic

parameters (moderate hardening MH-fluids), asymmetric and more

intense vortices are generated. Moreover, at high deformation-rates

and for NH and MH cases, there is evidence of attainment of a second

Newtonian plateau, where vortex-activity retreats into the recess-

corners. Finally, for strongly-hardening (SH) fluids and consider-

ing solute-concentration increase, predictions for various solvent-

fractions (1/9 ≤ 𝛽 ≤ 0.9) reveal a complex evolution history, from

salient-corner vortex activity for 𝛽 = 0.9, to strong elastic-corner vor-

tices for 𝛽 = 1/9. Notably, intermediate 𝛽 = {0.7, 0.8} solutions dis-

play coexistence of both upstream lip- and salient-corner vortices;

with greater polymer-concentration, lip-vortices tend to dominate

and generate elastic-corner vortices. These are all features of chal-

lenge to experimental validation, providing benchmark predictive

solutions to be reproduced by experimentalists and/or to be taken

as a source of comparison by other theoretical/numerical workers. 

b) Oil-based dSM: The relatively stronger extensional response of the

dSM model renders stronger kinematical activity, with larger and
209 
more active vortices that evolve directly from salient-corner vortices

at low flow-rates to strong elastic-corner vortices. 

Under the plastic regime, in extremely concentrated conditions

( 𝛽 ≤ 1/9) and low-to-moderate flow-rates (0.1 ≤ Q(Wi) ≤ 10),

with Q -rise yield-fronts reveal growing yielded-zones about

the contraction-zone. These yielded-zones connect those aris-

ing in the constriction-region to those around the upstream and

downstream-walls; gradually becoming asymmetrical of form

with either Q -rise 

a) Under micellar BMP + _ 𝜏p -response, plastic features are enhanced

via increase in polymer-concentration (1 − 𝛽). This has a combined

effect with flow-rate rise: at low flow-rates, symmetrical and re-

duced yielded regions are recognised; whilst Q -increase exagger-

ates shear-thinning (drop in viscosity levels in high-shear zones)

and drives solutions towards enhanced fluidisation (high fluidity

in same high-shear zones). These trends are also reflected through

corresponding total pressure-drops, which rise with yield-stress in-

crease. As such, the yield-stress enhancing-parameter plays a key

role in total pressure-drop response. Under BMP + _ 𝜏p , polymer-

concentration (1 − 𝛽)-increase (solvent-fraction 𝛽-decrease) provides

much stronger pressure-drop adjustment than observed under dSM

𝜏0d -increase. Indeed, between these two models, two distinctly dif-

ferent total pressure-drop patterns can be observed. 

b) Under dSM response at fixed solvent-fraction ( 𝛽 = 1/9), 𝜏0d -increase

generates a relatively narrow pressure-drop prediction window. In

contrast, for response under BMP + _ 𝜏p , pressure-drops span-out with

polymer-concentration (1 − 𝛽)-increase. 

c) Overall, BMP + _ 𝜏p provides ultimate plateauing trends in pressure-

drop at larger levels of solvent-fraction ( 𝛽 ≥ 10 − 2 ); then, these tend

towards more monotonically rising forms as polymer concentra-

tion heightens still further ( 𝛽 ≤ 5 ×10 − 3 ). Such dramatic BMP + _ 𝜏p 

pressure-drop elevation with solute-content (yield-stress), correlates

with the rise of first Newtonian-plateaux (both in shear and exten-

sion) at low deformation-rates. In addition, the impact of shear-

thinning and strain-softening become steeper. As a consequence,

their effects are stark, but only when departing from the low

deformation-rate regime - via Q -rise and for the more extreme poly-

mer concentrated fluids ( 𝛽 ≤ 5 ×10 − 3 ). 
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