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The speed of the Goldstone sound mode of a spin-orbit-coupled atomic Fermi gas loaded in a square optical lattice with a non-
Abelian gauge field in the presence of a Zeeman field is calculated within the Gaussian approximation and from the Bethe-Salpeter
equation in the generalized random phase approximation. It is found that (i) there is no sharp change of the slope of the Goldstone
soundmode across the topological quantum phase transition point and (ii) the Gaussian approximation significantly overestimates
the speed of sound of the Goldstone mode compared to the value provided by the BS formalism.

1. Introduction

It is well known that topological superfluids are new states
of matter that can be observed in two-dimensional atomic
Fermi gases with strong Rashba spin-orbit coupling (SOC),
conventional s-wave pairing, and out-of-plane magnetic
field (Zeeman field) which breaks time-reversal symmetry.
In what follows, we study the speed of sound of a two-
component pseudospin-↑, ↓ fermionic gas loaded on a square
optical latticewith a non-Abelian gauge fieldA = (𝛼𝜎�푦, −𝛼𝜎�푥)
in the presence of a Zeeman field, where 𝛼 is independently
tunable parameter, and 𝜎�푖, 𝑖 = 𝑥, 𝑦, 𝑧 are the Pauli matrices.
The external non-Abelian gauge field effectively creates a SOC
in the gas. The pseudospin of atoms can couple with the Zee-
man field and the orbital degrees of freedom of atoms, which
gives rise to a topological quantum phase transition (TQPT)
between gapped (topological trivial) and gapless (topological
nontrivial) superfluid states. In other words, the spectrum
of the Hamiltonian becomes gapless at some set of points in
the momentum space. Due to absence of symmetry breaking
across the TQPTs, it remains experimentally challenging to
detect these phase transitions. It is experimentally possible

to detect TQPTs by measuring the dynamic response of the
bulk under an external force [1], by observing the edgemodes
[2, 3], or the momentum distributions of atoms across the
phase transition boundary using a noise-correlation imaging
[4] and momentum-resolved spectroscopy [5, 6].

Recent numerical calculations of the sound speed of
atomic Fermi gases with s-wave attraction, synthetic Rashba
SOC, and out-of-plane Zeeman field in two- and three-
dimensional free space [7–9] show sharp changes of the slope
of the Goldstone sound mode across the phase transition
points, and this can be used to detect TQPTs. Our goal is to
study whether a similar behavior of the sound speed occurs
in the lattice case if the SOC is created by the non-Abelian
gauge field. We found that the sharp change in the slope does
not exist in the presence of lattice geometry.

It is widely accepted among the cold-atom community
that the system of a two-component Fermi gas with s-
wave attraction in square optical lattice with an external
non-Abelian gauge field (or a synthetic Rashba SOC) and
out-of-plane Zeeman field can be described by a negative-
U Hubbard model [10–26]. We restrict the discussion to
the case of atoms confined to the lowest-energy band
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(single-band model). We assume that there are𝑀 = 𝑁↑ +𝑁↓

atoms distributed along 𝑁 sites, and the filling factor 𝑓 =𝑓↑ + 𝑓↓ = 𝑀/𝑁 is smaller than unity. The corresponding
polarization is 𝑃 = (𝑓↑ − 𝑓↓)/𝑓. The Hamiltonian for an
uniform system is 𝐻̂ = 𝐻̂0 + 𝐻̂�푈, where𝐻̂0 = − ∑

⟨�푖,�푗⟩,�휎,�휎󸀠

𝜓†
�푖,�휎𝑡�휎�휎󸀠

�푖,�푗 𝜓�푗,�휎󸀠 − 𝜇∑
�푖,�휎

𝑛�푖,�휎 + 𝐻̂�푍. (1)

The out-of-plane Zeeman field is described by the term 𝐻̂�푍:𝐻̂�푍 = ℎ∑
�푖

(𝜓†
�푖,↑, 𝜓†

�푖,↓) 𝜎�푧 (𝜓�푖,↑𝜓�푖,↓

) . (2)

The Hubbard part of the Hamiltonian is𝐻̂�푈 = −𝑈∑
�푖

𝑛�푖,↑𝑛�푖,↓. (3)

Here, 𝜇 is the chemical potential, and 𝑛�푖,�휎 = 𝜓†
�푖,�휎𝜓�푖,�휎 is

the density operator on site 𝑖. The Fermi operator 𝜓†
�푖,�휎 =(1/𝑁)∑k exp(−𝚤k.r�푖)𝜓†

k,�휎 (𝜓�푖,�휎 = (1/𝑁)∑k exp(𝚤k.r�푖)𝜓k,�휎)
creates (destroys) a fermion on the lattice site r�푖 with
pseudospin projection 𝜎. The sum ∑⟨�푖�푗⟩ means sum over the
nearest-neighbor sites of the 2D lattice. 𝑡�휎�휎󸀠

�푖,�푗 = 𝑡�푖,�푗 exp[−𝚤𝜃�휎�휎󸀠

�푖,�푗 ]
describes the hoping of the atoms between site 𝑗 and site 𝑖,
and 𝜃�휎�휎󸀠

�푖,�푗 = ∫r𝑖r𝑗 A.𝑑r is accumulated via the Peierls substitution
phase factor. The strength of the on-site Hubbard interaction
is 𝑈 > 0, which corresponds to attractive interaction.

Hamiltonian (1) in a momentum representation assumes
the form 𝐻̂0 = ∑k 𝜓†

k[𝜉(k)𝜎0 − ℎ𝜎�푧 + 𝐽�푥(k)𝜎�푥 + 𝐽�푦(k)𝜎�푦]𝜓k.
Here, 𝜓†

k = (𝜓†
k,↑, 𝜓†

k,↓), 𝜉(k) = 𝜖(k) − 𝜇, 𝜖(k) is the
tight-binding energy, 𝜎0 is the identity matrix, and 𝐽�푥,�푦(k)
characterize the SOC.

In the case of a square lattice the vectors k = (𝑘�푥, 𝑘�푦) (in
units 𝑎−1) are restricted to be within the Brillouin zone, i.e.,
a square defined by the following four points (±𝜋/𝑎, ±𝜋/𝑎).
The tight-binding energy and 𝐽�푥,�푦 are given by𝜖 (k) = −2𝑡 cos (𝛼) [cos (𝑘�푥) + cos (𝑘�푦)] ,𝐽�푥 (k) = −2𝑡 sin (𝛼) sin (𝑘�푦) ,𝐽�푦 (k) = 2𝑡 sin (𝛼) sin (𝑘�푥) , (4)

where 𝑡 is the strength of the nearest-neighbor hopping (in
what follows, the lattice spacing 𝑎 and spacing 𝑡 are set to
unity).

The opening or closing of the gap can be achieved by
varying the tunable parameter 𝛼 along with the Zeeman field.
We first assume that the opening or closing of the gap is
achieved by varying the parameter 𝛼, while by changing the
out-of-plane Zeeman field the polarization is kept fixed. We
also discuss the second possibility, when one can close or
open the gap by changing the Zeeman field while keeping
the parameter 𝛼 fixed. In this case the polarization changes
during the transition fromgapless to gapped superfluid states.

The single-particle and collective excitations of the system
under consideration manifest themselves as poles of the
single-particle and two-particle Green’s functions, but the
corresponding expressions for the Green’s functions cannot
be evaluated exactly because the interaction part of the
Hubbard Hamiltonian is quartic in the fermion fields. The
simplest way to solve this problem is to apply the so-called
mean field decoupling of the quartic interaction. According
to the standard mean field theory on the Hubbard Hamilto-
nian, the on-site interaction is decoupled (up toHartree-Fock
correction terms) as−𝑈𝑛�푖,↑𝑛�푖,↓ ≈ Δ(𝜓�푖,↓𝜓�푖,↑ + 𝜓†

�푖,↑𝜓†
�푖,↓ + Δ𝑈) , (5)

where the order parameterΔ = −𝑈⟨𝜓�푖,↓𝜓�푖,↑⟩ is a real number.
Instead of applying the mean field decoupling, we shall

transform the quartic terms to a quadratic form by intro-
ducing a four-component boson field which mediates the
interaction of fermions in the same manner as in quantum
electrodynamics, where the photons mediate the interaction
of electric charges. Green’s functions are thermodynamic
averages of the 𝑇̂�푢-ordered products of field operators.
The standard procedure for calculating Green’s functions
is to apply Wick’s theorem. This enables us to evaluate
the 𝑇̂�푢-ordered products of field operators as perturbation
expansions involving only wholly contracted field operators.
These expansions can be summed formally to yield different
equations of Green’s functions.Themain disadvantage of this
procedure is that the validity of the equationsmust be verified
diagram by diagram. For this reason, we shall use themethod
of Legendre transforms [27] of the generating functional for
connected Green’s functions to derive the Schwinger-Dyson
[28, 29] (SD) equation 𝐺−1 = 𝐺(0)−1 − Σ for the poles of the
single-particle Green’s function, 𝐺, and the Bethe-Salpeter
[30, 31] (BS) equation [𝐾(0)−1 − 𝐼]Ψ = 0 for the poles of
the poles of the two-particle Green’s function, 𝐾. Here, 𝐺(0)

is the free single-particle propagator, Σ is the fermion self-
energy, 𝐼 is the BS kernel, and the two-particle free propagator𝐾(0) = 𝐺𝐺 is a product of two fully dressed single-particle
Green’s functions.Thekernel of the BS equation is defined as a
sum of the direct interaction, 𝐼�푑 = 𝛿Σ�퐹/𝛿𝐺, and the exchange
interaction 𝐼�푒�푥�푐 = 𝛿Σ�퐻/𝛿𝐺, where Σ�퐹 and Σ�퐻 are the Fock
and the Hartree parts of the fermion self-energy Σ. Since
the fermion self-energy depends on the two-particle Green’s
function, the positions of both poles must to be obtained
by solving the SD and BS equations self-consistently. Instead
of solving self-consistently the SD and BS equations, we
shall employ the generalized random phase approximation
(GRPA). In this approximation, the single-particle excitations
are obtained in the mean field approximation, while the
collective modes are obtained by solving the BS equation
in which single-particle Green’s functions are calculated in
Hartree-Fock approximation, and the BS kernel is obtained
by summing ladder and bubble diagrams.

2. Functional-Integral Formalism

2.1. Field-Theoretical Approach to the Hubbard Model. The
functional-integral formulation of the Hubbard model
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requires the representation of the Hubbard interaction−𝑈∑�푖 𝑛�푖,↑𝑛�푖,↓ in terms of squares of fermion operators. This
can be done by employing a certain Hubbard-Stratonovich
transformation. This field-theoretical approach to the Hub-
bard Hamiltonian has already been used to describe the
collective modes of ultracold 6𝐿𝑖-40𝐾 mixture in a square
optical lattice (see [32]). Hamiltonian (1) in the present study
has two more interactions. It is possible to include both
the SOC and the Zeeman field into initial definition of the
free fermion Green’s function, and therefore most of the
general equations in [32] remain unchanged. In particular,
the general expressions for the SD and BS equations are the
same as thosewithout the SOCand theZeemanfield, butwith
more complicated fermion self-energy and BS kernel.

As it is well known, Green’s functions in the functional-
integral approach are defined by means of the so-called
generating functional with sources for the boson and fermion
fields, but the corresponding functional integrals cannot be
evaluated exactly because the interaction part of the Hubbard
Hamiltonian is quartic in the Grassmann fermion fields.
However, we can transform the quartic terms to a quadratic
form by introducing a model systemwhich consists of a four-
component boson field 𝐴�훼(𝑧) interacting with fermion fields𝜓̂(𝑦) = Ψ̂†(𝑦)/√2 and 𝜓̂(𝑥) = Ψ̂(𝑥)/√2, where

Ψ̂ (𝑥) =(𝜓↑ (𝑥)𝜓↓ (𝑥)𝜓†
↑ (𝑥)𝜓†
↓ (𝑥)),

Ψ̂† (𝑦) = (𝜓†
↑ (𝑦) 𝜓†

↓ (𝑦) 𝜓↑ (𝑦) 𝜓↓ (𝑦)) .
(6)

Here 𝛼 = 1, 2, 3, 4, 𝑥 = (r�푖, 𝑢), 𝑦 = (r�푗, 𝑢�耠), and 𝑧 =(r�푘, V) are composite variables, where r�푖, r�푗, and r�푘 are the
lattice site vectors. According to imaginary-time (Matsubara)
formalism the variables 0 ≤ V, 𝑢, 𝑢�耠 ≤ 𝛽 = (𝑘�퐵𝑇)−1; 𝑘�퐵 is the
Boltzmann constant (ℏ = 𝑘�퐵 = 1).

The field operators (6) allow us to define generalized
single-particle Green’s function by using a tensor product
of these two matrices. The corresponding Green function,
represented by a 4×4matrix, includes all possible thermody-
namic averages:𝐺 (𝑥1; 𝑦2) = −⟨𝑇̂�푢 (Ψ̂ (𝑥1) ⊗ Ψ̂ (𝑦2))⟩ . (7)

The action of the above-mentioned model system is
assumed to be of the following form 𝑆 = 𝑆(�퐹)

0 +𝑆(�퐵)
0 + 𝑆(�퐹−�퐵), where 𝑆(�퐹)

0 = 𝜓̂(𝑦)𝐺(0)−1(𝑦; 𝑥)𝜓̂(𝑥), 𝑆(�퐵)
0 =(1/2)𝐴�훼(𝑧)𝐷(0)−1

�훼�훽
(𝑧, 𝑧�耠)𝐴�훽(𝑧�耠), 𝑆(�퐹−�퐵) = 𝜓̂(𝑦)Γ̂(0)

�훼 (𝑦, 𝑥 |𝑧)𝜓̂(𝑥)𝐴�훼(𝑧). The fermion action 𝑆(�퐹)
0 corresponds to the

Hamiltonian 𝐻̂0. The corresponding inverse Green function
of free fermions 𝐺(0)−1(𝑦; 𝑥) is given by the following 4 × 4
matrix:𝐺(0)−1 (𝑦; 𝑥) = ∑

k,�휔𝑚

exp [𝚤k. (r�푖 − r�푖󸀠) − 𝜔�푚 (𝑢 − 𝑢�耠)]
⋅ 𝐺(0)−1 (k, 𝚤𝜔�푚) . (8)

The symbol∑�휔𝑚
is used to denote 𝛽−1 ∑�푚 (for fermion fields𝜔�푚 = (2𝜋/𝛽)(𝑚 + 1/2); 𝑚 = 0, ±1, ±2, . . .).

The Fourier transform of noninteracting Green’s function
is

𝐺(0)−1 (k, 𝚤𝜔�푚) =((((((
(

𝚤𝜔�푚 − 𝜉 (k) − ℎ − (𝐽�푥 (k) + 𝚤𝐽�푦 (k)) 0 0− (𝐽�푥 (k) − 𝚤𝐽�푦 (k)) 𝚤𝜔�푚 − 𝜉 (k) + ℎ 0 00 0 𝚤𝜔�푚 + 𝜉 (k) + ℎ − (𝐽�푥 (k) − 𝚤𝐽�푦 (k))0 0 − (𝐽�푥 (k) + 𝚤𝐽�푦 (k)) 𝚤𝜔�푚 + 𝜉 (k) − ℎ
))))))
)

. (9)

After including the Zeeman field and the SOC interaction
into free fermion Green’s function (9), one can perform the
same steps as in [32] to come up with the following single-
particle Green function:

𝐺−1 (1; 2) =(𝐺(0)−1
11 𝐺(0)−1

12 0 −Δ �푖1 ,�푖2𝐺(0)−1
21 𝐺(0)−1

22 Δ �푖1 ,�푖2
00 Δ �푖1 ,�푖2

𝐺(0)−1
33 𝐺(0)−1

31−Δ �푖1 ,�푖2
0 𝐺(0)−1

41 𝐺(0)−1
44

), (10)

where 𝐺(0)−1
�푖�푗 = 𝐺(0)−1

�푖�푗 (r�푖1 − r�푖2 ; 𝑢1 − 𝑢2), and Δ �푖1 ,�푖2
≡ Δ𝛿(r�푖1 −

r�푖2), where Δ is a constant in space. Physically, it describes a
superfluid state of Cooper pairs with zero momentum when
the pairing is only between atoms with equal and opposite
momenta.

2.2. Mean Field Approximation. The Fourier transform of
zero-temperature single-particle Green’s function (10) in the
mean field approximation is
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𝐺�푀�퐹 (k, 𝚤𝜔�푚) =( 𝚤𝜔�푚 − 𝜉 (k) − ℎ − (𝐽�푥 (k) + 𝚤𝐽�푦 (k)) 0 Δ− (𝐽�푥 (k) − 𝚤𝐽�푦 (k)) 𝚤𝜔�푚 − 𝜉 (k) + ℎ −Δ 00 −Δ 𝚤𝜔�푚 + 𝜉 (k) + ℎ − (𝐽�푥 (k) − 𝚤𝐽�푦 (k))Δ 0 − (𝐽�푥 (k) + 𝚤𝐽�푦 (k)) 𝚤𝜔�푚 + 𝜉 (k) − ℎ )
−1

. (11)

The matrix elements 𝐺�푀�퐹
�푛1�푛2

(k, 𝚤𝜔�푚) (𝑛1, 𝑛2 = 1, 2, 3, 4) of𝐺�푀�퐹(k, 𝜔) are given by𝐺�푀�퐹
�푛1�푛2

(k, 𝜔) = 𝐴�푛1�푛2
(k)𝜔 − 𝜔 (k) + 𝚤0+

+ 𝐵�푛1�푛2
(k)𝜔 + 𝜔 (k) − 𝚤0++ 𝐶�푛1�푛2

(k)𝜔 − Ω (k) + 𝚤0+
+ 𝐷�푛1�푛2

(k)𝜔 + Ω (k) − 𝚤0+
, (12)

where the corresponding expressions for 𝐴�푛1�푛2
(k), 𝐵�푛1�푛2

(k),𝐶�푛1�푛2
(k), and 𝐷�푛1�푛2

(k) can be obtained by inverting matrix
(11) and setting 𝑇 󳨀→ 0.

For a fixed filing factor 𝑓 = 𝑓↑ + 𝑓↓ and at a given
Zeeman field ℎ, the chemical potential 𝜇 and the gap Δ have
to be determined by solving the mean field number and gap
equations:𝑓 = 1 −∑

k
[12 − 𝐹 (Ω (k))] 𝜉 (k)Ω (k)

⋅ (1 + 𝑆 (k) + ℎ2√(𝑆 (k) + ℎ2) 𝜉2 (k) + ℎ2Δ2
)

−∑
k
[12 − 𝐹 (𝜔 (k))] 𝜉 (k)𝜔 (k)

⋅ (1 − 𝑆 (k) + ℎ2√(𝑆 (k) + ℎ2) 𝜉2 (k) + ℎ2Δ2
),

(13)

1𝑈 = ∑
k
[12 − 𝐹 (Ω (k))] 12Ω (k)

⋅ (1 + ℎ2√(𝑆 (k) + ℎ2) 𝜉2 (k) + ℎ2Δ2
)

+∑
k
[12 − 𝐹 (𝜔 (k))] 12𝜔 (k)

⋅ (1 − ℎ2√(𝑆 (k) + ℎ2) 𝜉2 (k) + ℎ2Δ2
).

(14)

Here, 𝑆(k) = 𝐽2
�푥(k) + 𝐽2

�푦(k), 𝐹(𝜔) is the Fermi-Dirac dis-
tribution function, and the following notations have been
introduced:

Ω (k)= √𝑆 (k) + 𝜉2 (k) + Δ2 + ℎ2 + 2√(𝑆 (k) + ℎ2) 𝜉2 (k) + ℎ2Δ2, (15)

𝜔 (k)= √𝑆 (k) + 𝜉2 (k) + Δ2 + ℎ2 − 2√(𝑆 (k) + ℎ2) 𝜉2 (k) + ℎ2Δ2. (16)

The number equation (13) follows from the definitions of
the filing factors 𝑓↑,(↓) = ∑k ∑�횤�휔𝑚

𝐺�푀�퐹
11,(22)(k, 𝚤𝜔�푚) through

corresponding mean field Green’s functions. It is known that
the gap equation can be obtained by minimizing the mean
field Helmholtz free energy with respect to Δ.

As wementioned before, in order to keep the polarization
fixed, one has to adjust the corresponding Zeeman field. This
means that 𝜇, Δ, and ℎ have to be calculated by solving
the number and the gap equations, along with the following
equation:𝑓↓ − 𝑓↑ = ∑

k
[12 − 𝐹 (Ω (k))]

⋅ ℎΩ (k) (1 + 𝜉2 (k) + Δ2√(𝑆 (k) + ℎ2) 𝜉2 (k) + ℎ2Δ2
)

+∑
k
[12 − 𝐹 (𝜔 (k))]

⋅ ℎ𝜔 (k) (1 − 𝜉2 (k) + Δ2√(𝑆 (k) + ℎ2) 𝜉2 (k) + ℎ2Δ2
).

(17)

Another interesting feature is that because of the SOC
term inHamiltonian (1) the pairing field contains both singlet
and triplet component. The singlet Φ↓↑(k) = −Φ↑↓(k) =⟨𝜓k↓𝜓−k↑⟩ and triplet Φ↑↑(k) = ⟨𝜓k↑𝜓−k↑⟩, Φ↓↓(k) =⟨𝜓k↓𝜓−k↓⟩ amplitudes, obtained bymeans of Green’s function
elements 𝐺�푀�퐹

23 , 𝐺�푀�퐹
13 , and 𝐺�푀�퐹

24 , are

Φ↓↑ (k) = Δ [1/2 − 𝑓�퐹 (Ω (k))]2Ω (k) [[[1+ ℎ2√𝑆 (k) 𝜉2 (k) + ℎ2 [Δ2 + 𝜉2 (k)]]]]
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+ Δ [1/2 − 𝑓�퐹 (𝜔 (k))]2𝜔 (k) [[[1− ℎ2√𝑆 (k) 𝜉2 (k) + ℎ2 [Δ2 + 𝜉2 (k)]]]] ;
Φ↑↑ (k)= Δ𝐽 (k) [ℎ − 𝜉 (k)]2√𝑆 (k) 𝜉2 (k) + ℎ2 [Δ2 + 𝜉2 (k)] [1/2 − 𝑓�퐹 (Ω (k))Ω (k)

− 1/2 − 𝑓�퐹 (𝜔 (k))𝜔 (k) ] ;Φ↓↓ (k)= Δ𝐽∗ (k) [ℎ + 𝜉 (k)]2√𝑆 (k) 𝜉2 (k) + ℎ2 [Δ2 + 𝜉2 (k)] [1/2 − 𝑓�퐹 (Ω (k))Ω (k)
− 1/2 − 𝑓�퐹 (𝜔 (k))𝜔 (k) ] .

(18)

With the help of the pairing amplitudes, one can calculate
the total condensate fraction 𝑓�푐 = 𝑓�푠 + 𝑓�푡�푟, where 𝑓�푠 and 𝑓�푡�푟

are the singlet and the triplet contributions, correspondingly.
At zero temperature, we obtain

𝑓�푠 = 2𝑁∑
k

󵄨󵄨󵄨󵄨󵄨Φ↓↑ (k)󵄨󵄨󵄨󵄨󵄨2 = Δ28𝑁∑
k

[[[ 1Ω (k) (1
+ ℎ2√𝑆 (k) 𝜉2 (k) + ℎ2 [Δ2 + 𝜉2 (k)]) + 1𝜔 (k) (1
− ℎ2√𝑆 (k) 𝜉2 (k) + ℎ2 [Δ2 + 𝜉2 (k)])]]]

2 ,
(19)

𝑓�푡�푟 = 1𝑁∑
k
(󵄨󵄨󵄨󵄨󵄨Φ↑↑ (k)󵄨󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨󵄨Φ↓↓ (k)󵄨󵄨󵄨󵄨󵄨2) = Δ28𝑁

⋅ ∑
k

𝑆 (k) [ℎ2 + 𝜉2 (k)]𝑆 (k) 𝜉2 (k) + ℎ2 [Δ2 + 𝜉2 (k)] [ 1Ω (k)− 1𝜔 (k)]2 .
(20)

2.3. The Bethe-Salpeter Equation for the Collective Excita-
tions in the Generalized Random Phase Approximation. The

spectrum of the collective modes will be obtained by solving
the BS equation in the GRPA. As we have already mentioned,
the kernel of the BS equation is a sum of the direct 𝐼�푑 =𝛿Σ�퐹/𝛿𝐺 and exchange 𝐼�푒�푥�푐 = 𝛿Σ�퐻/𝛿𝐺 interactions, written
as derivatives of the Fock and the Hartree parts of the self-
energy.Thus, in theGRPA the corresponding equation for the
BS amplitude ΨQ

�푛2,�푛1
is given by (see [32])

ΨQ
�푛2�푛1

= 𝐾(0) ( 𝑛1 𝑛3𝑛2 𝑛4

| 𝜔 (Q)) [𝐼�푑 (𝑛3 𝑛5𝑛4 𝑛6

)
+ 𝐼�푒�푥�푐 (𝑛3 𝑛5𝑛4 𝑛6

)]ΨQ
�푛6,�푛5

, (21)

where 𝐼�푑 ( �푛1 �푛3
�푛2 �푛4 ) = −Γ(0)

�훼 (𝑛1, 𝑛3)𝐷(0)
�훼�훽
Γ(0)
�훽
(𝑛4, 𝑛2) and𝐼�푒�푥�푐 ( �푛1 �푛3

�푛2 �푛4 ) = (1/2)Γ(0)
�훼 (𝑛1, 𝑛2)𝐷(0)

�훼�훽
Γ(0)
�훽
(𝑛4, 𝑛3) are the

direct and the exchange interactions, correspondingly. The
two-particle propagator 𝐾(0) in the GRPA is defined as
follows:𝐾(0) ( 𝑛1 𝑛3𝑛2 𝑛4

| 𝜔,Q) ≡ 𝐾�푛1�푛3�푛4�푛2
(𝜔,Q) = ∫ 𝑑Ω2𝜋⋅ ∫ 𝑑2k(2𝜋)2𝐺�푀�퐹

�푛1�푛3
(k +Q, Ω + 𝜔 (Q)) 𝐺�푀�퐹

�푛4�푛2
(k, Ω)

= ∫ 𝑑2k(2𝜋)2 [ 𝐴�푛1�푛3
(k +Q) 𝐵�푛4�푛2

(k)𝜔 − (𝜔 (k +Q) + 𝜔 (k))− 𝐵�푛1�푛3
(k +Q) 𝐴�푛4�푛2

(k)𝜔 + (𝜔 (k +Q) + 𝜔 (k))+ 𝐶�푛1�푛3
(k +Q) 𝐷�푛4�푛2

(k)𝜔 − (Ω (k +Q) + Ω (k))− 𝐷�푛1�푛3
(k +Q) 𝐶�푛4�푛2

(k)𝜔 + (Ω (k +Q) + Ω (k))+ 𝐴�푛1�푛3
(k +Q) 𝐷�푛4�푛2

(k)𝜔 − (𝜔 (k +Q) + Ω (k))− 𝐵�푛1�푛3
(k +Q) 𝐶�푛4�푛2

(k)𝜔 + (𝜔 (k +Q) + Ω (k))+ 𝐶�푛1�푛3
(k +Q) 𝐵�푛4�푛2

(k)𝜔 − (Ω (k +Q) + 𝜔 (k))− 𝐷�푛1�푛3
(k +Q) 𝐴�푛4�푛2

(k)𝜔 + (Ω (k +Q) + 𝜔 (k))] .

(22)

The BS equation (21) can be written in the matrix form as (𝐼+𝑈𝑍)Ψ̂ = 0, where 𝐼 is the unit matrix, thematrix𝑍 is a 16×16
matrix, and the transposed matrix of Ψ̂ is given by

Ψ̂�푇 = (ΨQ
1,1 ΨQ

1,2 ΨQ
1,3 ΨQ

1,4 ΨQ
2,1 ΨQ

2,2 ΨQ
2,3 ΨQ

2,4 ΨQ
3,1 ΨQ

3,2 ΨQ
3,3 ΨQ

3,4 ΨQ
4,1 ΨQ

4,2 ΨQ
4,3 ΨQ

4,4) . (23)
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At a given vectorQ from the Brillouin zone, the collective
excitation spectrum𝜔(Q) is obtained by the condition det |𝐼+𝑈𝑀̂(𝜔(Q),Q))| = 0 to have a nontrivial solution of the
BS equation. By applying simple matrix algebra, the above
secular 16 × 16 determinant can be simplified to a 10 × 10
BS determinant det |𝐵𝑆(𝜔(Q),Q)| = 0, where the BS matrix
is given by𝐵𝑆 (𝜔,Q) = (𝐴2×2 (𝜔,Q) 𝐵2×8 (𝜔,Q)𝐶8×2 (𝜔,Q) 𝐷8×8 (𝜔,Q)) . (24)

The elements𝐴 �푖,�푗, 𝐵�푖,�푗, 𝐶�푖,�푗, and𝐷�푖,�푗 of the blocks𝐴2×2(𝜔,Q),𝐵2×8(𝜔,Q), 𝐶8×2(𝜔,Q), and 𝐷8×8(𝜔,Q) are given in the
Appendix in terms of the propagators𝐾�푛1�푛3�푛4�푛2

(𝜔,Q).
In contrast to our functional-integral formalism, one can

use the Hubbard-Stratonovich transformation to introduce
the energy gap as an order parameter field. In this approach,
one can integrate out the fermion fields and to arrive at
an effective action. The next steps are to consider the state
which corresponds to the saddle point of the effective action
and to write the effective action as a series in powers
of the fluctuations and their derivatives. The exact result
can be obtained by explicitly calculating the terms up to
second order in the fluctuations and their derivatives. This
approximation is called the Gaussian approximation. Within
this approximation, the collective excitation spectrum 𝜔(Q)
is defined by the 2 × 2 Gaussian secular determinant

det 󵄨󵄨󵄨󵄨𝐴2×2 (𝜔 (Q) ,Q)󵄨󵄨󵄨󵄨 = 0, (25)

while within the BS formalism the secular determinant is
more complicated ((𝜔(Q),Q) dependence is understood):

det 󵄨󵄨󵄨󵄨󵄨𝐴2×2 − 𝐵2×8.𝐷−1
8×8.𝐶8×2

󵄨󵄨󵄨󵄨󵄨 = 0 (26)

3. Numerical Results

There are various mean field quantities of physical interest,
such as the chemical potential, the pairing gap, the singlet
and triplet pairing amplitudes, and the singlet and triplet
condensate fractions. We focus on the zero-temperature case
assuming two different filling factors of 𝑓 = 0.4 and 𝑓 = 0.6.
The strength of the attractive interaction is 𝑈/𝑡 = 4, and for
both filling factors the polarization is fixed to be 𝑃 = 0.48.

In Figure 1, we plot the chemical potential 𝜇, the gapΔ, and the corresponding Zeeman field ℎ, as functions of
the SOC parameter 𝛼, obtained by solving the mean field
equations (13)-(17). In Figure 2 we have shown the singlet
and the triplet condensate fractions, as functions of the SOC
parameter 𝛼, obtained by solving the mean field equations
along with definitions (19) and (20). It can be seen that at the
value 𝛼 = 𝜋/2, where 𝜉(k) = −𝜇 and 𝑆(k) = 4𝑡2[sin2(𝑘�푥) +
sin2(𝑘�푦)], the chemical potential has a minimum, while the
gap and the Zeeman field reach their maximum values. As
expected, the singlet and triplet condensate fraction-graphs
have maximum at the same 𝛼 as the gap.

Next, we have calculated the speed of sound as a function
of the SOC parameter 𝛼.The sound speed 𝑐 is proportional to
the slope𝑢 of theGoldstone soundmode 𝑐 = 𝑢𝑎𝑡/ℏ.The slope
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Figure 1: Chemical potential 𝜇, pairing gap Δ, and the Zeeman fieldℎ of a Fermi gas in a square optical lattice subject to a non-Abelian
gauge field A = (𝛼𝜎�푦, −𝛼𝜎�푥). The graphs are obtained by solving
the mean field equations (13)-(17) using two different filling factors:𝑓 = 0.4 and 𝑓 = 0.6. The on-site attractive strength is 𝑈 = 4𝑡, and
the polarization is 𝑃 = 0.48.
𝑢 has been numerically obtained using the collective-mode
dispersion 𝜔(Q) for small wave vectors in 𝑄�푥-direction.

It is clear that the single-particle dispersion, given by
(16), becomes precisely zero at some special points k0 in
momentum space satisfying the condition 𝑆(k0) = 0 whenℎ = √(𝜖(k0) − 𝜇)2 + Δ2. The condition 𝑆(k0) = 0 is met
at the following points: (0, 0), (0, ±𝜋), (±𝜋, 0), and (±𝜋, ±𝜋).
For 𝑈/𝑡 = 4, 𝑃 = 0.48, and a filling factor 𝑓 = 0.4,
we have two points at which the single-particle dispersion
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Figure 2: The singlet 𝑓�푠 and the triplet 𝑓�푡�푟 contributions to the total
condensed fraction 𝑓 = 𝑓�푠 + 𝑓�푡�푟 of a Fermi gas in a square optical
lattice subject to a non-Abelian gauge field A = (𝛼𝜎�푦, −𝛼𝜎�푥). The
graphs are obtained by solving the mean field equations along with
definitions (19) and (20). The system parameters are the same as in
Figure 1.

𝜔(k0,1) = 0. The first one is at the center of the Brillouin
zone k0 = (0, 0), and 𝜔(k0) = 0 for 𝛼/𝜋 between 0.39 and0.40. At the second point, k1 = (𝜋, 𝜋), we found also the
existence of opening and closing of a gap inmomentum space
when 0.61 < 𝛼/𝜋 < 0.62. Therefore, at both points one
should have a TQPT between superfluid states with different
topologies. During the TQPT the different phases of matter
are not characterized by an order parameter, but rather an
integer number, the Chern number, describing the system as
a whole.This is because the different phases across the TQPT
are characterized by different topologies of Fermi surface
instead of being classified by different symmetries.

In Figure 3, we have shown the slope calculated by
using the Gaussian and the BS secular determinants (25) and
(26), correspondingly. It is worth mentioning the significant
difference between the slope obtained within the Gaussian
approximation and the slope obtained by the BS secular
determinant. The arrows show the points where the opening
and closing of a gap take place. As can be seen, the sharp
change in the slope does not exist in the presence of a non-
Abelian gauge field.

The boundaries for the TQPT in [7–9] were accessed
by varying the Zeeman filed at a constant strength of the
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Figure 3: The slope of the Goldstone sound mode of a Fermi gas
in a square optical lattice subject to a non-Abelian gauge field A =(𝛼𝜎�푦, −𝛼𝜎�푥). The graphs are obtained by applying the Gaussian and
the BS secular determinants. The system parameters are the same as
in Figure 1. The arrows show the values of 𝛼 for which the opening
and closing of a gap take place.

synthetic Rashba SOC. It was found that on a topological
trivial side, where ℎ < ℎ�푐 = √(𝜖(k0) − 𝜇)2 + Δ2, the slope is
suppressed by the Zeeman field, while in the nontrivial side,
where ℎ > ℎ�푐 = √(𝜖(k0) − 𝜇)2 + Δ2, the slope is enhanced by
the Zeeman field. Asmentioned in [7, 8], this is quite unusual
since we generally expect that the superfluidity should be
suppressed by the Zeeman field.

We have fixed the non-Abelian parameter 𝛼 = 0.38𝜋,
and we have accessed the opening and the closing of a gap
in momentum space at the point k0 = (0, 0) by varying the
Zeeman filed. To do this, first we used (13)-(14) to calculate
numerically the chemical potential and the gap as functions
of the Zeeman field. The results are shown in Figure 4. The
TQPT takes place for ℎ�푐/𝑡 = 1.39 and ℎ�푐/𝑡 = 1.49. The insert
shows the behavior of the slope close to ℎ�푐/𝑡 = 1.49.We found
that there is no sharp change in the slope across the twoTQPT
points.

4. Discussion

In this paper, we are concerned with the question which
naturally arises here as to whether there is a possibility of
detecting TQPTs by monitoring the behavior of slope of the
sound mode if a non-Abelian gauge field is used instead of a
synthetic Rashba SOC. The answer is not trivial because the
non-Abelian gauge field is taken into account via the Peierls
substitution. As a result, the tight-binding energy 𝜖(k) =−2𝑡 cos(𝛼)[cos(𝑘�푥) + cos(𝑘�푦)] does depend on the parameter𝛼. The second difference is that the nondiagonal part of 𝜃�휎�휎󸀠

�푖,�푗 ,
i.e., 𝜎 ̸= 𝜎�耠, describes the spin-flipped hopping between site𝑖 and site 𝑗. In the case of a synthetic Rashba SOC we do not
have spin-flipped hopping, and the hopping to the nearest-
neighbor site does not depend on the strength of Rashba
SOC.
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Figure 4: Chemical potential 𝜇, pairing gap Δ, and the slope of the
Goldstone sound mode of a Fermi gas in a square optical lattice
subject to a non-Abelian gauge field with 𝛼 = 0.38𝜋 as a function of
the Zeeman field ℎ. The chemical potential and the gap are obtained
by solving the mean field number and gap equations (13)-(14). The
arrows show the values of the Zeeman field for which the opening
and closing of a gap take place. The insert shows the slope close toℎ�푐/𝑡 = 1.49.

In summary, we have derived the BS equation in the
GRPA for the collective excitation energy of a Fermi gas
loaded on a square optical lattice with a non-Abelian gauge
field in the presence of a Zeeman field. To the best of
our knowledge, there is no other calculation of the speed
of sound in a lattice geometry as a function of the non-
Abelian parameter with which we can make comparisons.

According to our numerical calculations, there is no sharp
change of the slope of the Goldstone sound mode across
the phase transition point. It is found that the Gaussian
approximation significantly overestimates the speed of sound
of the Goldstone mode compared to the value obtained
within the BS formalism.

Appendix

Blocks of the BS Matrix

The two-particle propagator in BS equation (21) is defined as

𝐾(0) ( 𝑛1 𝑛3𝑛2 𝑛4

| 𝜔,Q) ≡ 𝐾�푛1�푛3�푛4�푛2
(𝜔,Q)

= ∑
k
∫ 𝑑Ω2𝜋 𝐺�푀�퐹

�푛1�푛3
(k +Q, Ω + 𝜔)𝐺�푀�퐹

�푛4�푛2
(k, Ω) . (A.1)

The elements 𝐴 �푖,�푗, 𝐵�푖,�푗, 𝐶�푖,�푗, and 𝐷�푖,�푗 of the blocks𝐴2×2(𝜔,Q), 𝐵2×8(𝜔,Q),𝐶8×2(𝜔,Q), and𝐷8×8(𝜔,Q) are given
in terms of the propagators𝐾�푛1�푛3�푛4�푛2

(𝜔,Q) as follows:
𝐴1,1 = 1 + 𝑈02 (𝐾1144 + 𝐾2233 − 𝐾1234 − 𝐾2143) ,𝐴1,2 = 𝑈02 (𝐾1234 + 𝐾2413 − 𝐾1414 − 𝐾2323) ,𝐴2,1 = 𝑈02 (𝐾3142 + 𝐾4231 − 𝐾3232 − 𝐾4141) ,𝐴2,2 = 1 + 𝑈02 (𝐾3322 + 𝐾4411 − 𝐾3412 − 𝐾4321) ,

(A.2)

𝐵1,1 = 𝑈02 (𝐾1124 − 𝐾2123) ,𝐵1,2 = 𝑈02 (𝐾2323 − 𝐾1324) ,𝐵1,3 = 𝑈02 (𝐾1214 − 𝐾2213) ,𝐵1,4 = 𝑈02 (𝐾1434 − 𝐾2433) ,𝐵1,5 = −12 − 𝑈02 (𝐾1144 − 𝐾2143) ,𝐵1,6 = 𝑈02 (𝐾1344 − 𝐾2343) ,𝐵1,7 = 𝑈02 (𝐾1444 + 𝐾2223 − 𝐾1224 − 𝐾2443) ,𝐵1,8 = 𝑈02 (𝐾1334 + 𝐾2113 − 𝐾1114 − 𝐾2333) ,𝐵21 = 𝑈02 (𝐾3122 − 𝐾4121) ,
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𝐵2,2 = −12 − 𝑈02 (𝐾3322 − 𝐾4321) ,𝐵2,3 = 𝑈02 (𝐾3212 − 𝐾4211) ,𝐵2,4 = 𝑈02 (𝐾3432 − 𝐾4431) ,𝐵2,5 = 𝑈02 (𝐾4141 − 𝐾3142) ,𝐵2,6 = 𝑈02 (𝐾3342 − 𝐾4341) ,𝐵2,7 = 𝑈02 (𝐾3442 + 𝐾4221 − 𝐾3222 − 𝐾4441) ,𝐵2,8 = 𝑈02 (𝐾3332 + 𝐾4111 − 𝐾3112 − 𝐾4331) ,
(A.3)𝐶1,1 = 𝑈0 (𝐾1232 − 𝐾1142) ,𝐶1,2 = 𝑈0 (𝐾1412 − 𝐾1322) ,𝐶2,1 = 𝑈0 (𝐾3232 − 𝐾3142) ,𝐶2,2 = −1 − 𝑈0 (𝐾3322 − 𝐾3412) ,𝐶3,1 = 𝑈0 (𝐾2231 − 𝐾2141) ,𝐶3,2 = 𝑈0 (𝐾2411 − 𝐾2321) ,𝐶4,1 = 𝑈0 (𝐾4233 − 𝐾4143) ,𝐶4,2 = 𝑈0 (𝐾4413 − 𝐾4323) ,𝐶5,1 = −1 − 𝑈0 (𝐾1144 − 𝐾1234) ,𝐶5,2 = 𝑈0 (𝐾1414 − 𝐾1324) ,𝐶6,1 = 𝑈0 (𝐾3234 − 𝐾3144) ,𝐶6,2 = 𝑈0 (𝐾3414 − 𝐾3324) ,𝐶7,1 = 𝑈02 (𝐾1141 + 𝐾3233 − 𝐾1231 − 𝐾3143) ,𝐶7,2 = 𝑈02 (𝐾1321 + 𝐾3413 − 𝐾1411 − 𝐾3413) ,𝐶8,1 = 𝑈02 (𝐾2142 + 𝐾4234 − 𝐾2232 − 𝐾4144) ,𝐶8,2 = 𝑈02 (𝐾2322 + 𝐾4414 − 𝐾2412 − 𝐾4324) ,

(A.4)

𝐷1,1 = 1 − 𝑈0𝐾1122,𝐷1,2 = 𝑈0𝐾1322,𝐷1,3 = −𝑈0𝐾1212,𝐷1,4 = −𝑈0𝐾1432,𝐷1,5 = 𝑈0𝐾1142,

𝐷1,6 = −𝑈0𝐾1342,𝐷1,7 = 𝑈0 (𝐾1222 − 𝐾1442) ,𝐷1,8 = 𝑈0 (𝐾1112 − 𝐾1332) ,𝐷2,1 = −𝑈0𝐾3122,𝐷2,2 = 1 + 𝑈0𝐾3322,𝐷2,3 = −𝑈0𝐾3212,𝐷2,4 = −𝑈0𝐾3432,𝐷2,5 = 𝑈0𝐾3142,𝐷2,6 = −𝑈0𝐾3342,𝐷2,7 = −𝑈0 (𝐾3222 − 𝐾3442) ,𝐷2,8 = 𝑈0 (𝐾3112 − 𝐾3332) ,𝐷3,1 = −𝑈0𝐾2121,𝐷3,2 = 𝑈0𝐾2321,𝐷3,3 = 1 − 𝑈0𝐾2211,𝐷3,4 = −𝑈0𝐾2431,𝐷3,5 = 𝑈0𝐾2141,𝐷3,6 = −𝑈0𝐾2341,𝐷3,7 = 𝑈0 (𝐾2221 − 𝐾2441) ,𝐷3,8 = 𝑈0 (𝐾2111 − 𝐾2331) ,𝐷4,1 = −𝑈0𝐾4123,𝐷4,2 = 𝑈0𝐾4323,𝐷4,3 = −𝑈0𝐾4213,𝐷4,4 = 1 − 𝑈0𝐾4433,𝐷4,5 = 𝑈0𝐾4143,𝐷4,6 = −𝑈0𝐾4343,𝐷4,7 = 𝑈0 (𝐾4223 − 𝐾4443) ,𝐷4,8 = 𝑈0 (𝐾4113 − 𝐾4333) ,𝐷5,1 = −𝑈0𝐾1124,𝐷5,2 = 𝑈0𝐾1324,𝐷5,3 = −𝑈0𝐾1214,𝐷5,4 = −𝑈0K1434,𝐷5,5 = 1 + 𝑈0𝐾1144,𝐷5,6 = −𝑈0𝐾1344,𝐷5,7 = 𝑈0 (𝐾1224 − 𝐾1444) ,



10 Advances in Condensed Matter Physics𝐷5,8 = 𝑈0 (𝐾1114 − 𝐾1334) ,𝐷6,1 = −𝑈0𝐾3124,𝐷6,2 = 𝑈0𝐾3324,𝐷6,3 = −𝑈0𝐾3214,𝐷6,4 = −𝑈0𝐾3434,𝐷6,5 = 𝑈0𝐾3144,𝐷6,6 = 1 − 𝑈0𝐾3344,𝐷6,7 = 𝑈0 (𝐾3224 − 𝐾3444) ,𝐷6,8 = 𝑈0 (𝐾3114 − 𝐾3334) ,𝐷7,1 = 𝑈02 (𝐾1121 − 𝐾3123) ,𝐷7,2 = 𝑈02 (𝐾3323 − 𝐾1321) ,𝐷7,3 = 𝑈02 (𝐾1211 − 𝐾3213) ,𝐷7,4 = 𝑈02 (𝐾1431 − 𝐾3433) ,𝐷7,5 = 𝑈02 (𝐾3143 − 𝐾1141) ,𝐷7,6 = 𝑈02 (𝐾1342 − 𝐾3343) ,𝐷7,7 = −1 − 𝑈02 (𝐾1221 + 𝐾3443 − 𝐾1441 − 𝐾3223) ,𝐷7,8 = 𝑈02 (𝐾1331 + 𝐾3113 − 𝐾1111 − 𝐾3333) ,𝐷8,1 = 𝑈02 (𝐾2122 − 𝐾4124) ,𝐷8,2 = 𝑈02 (𝐾4324 − 𝐾2322) ,𝐷8,3 = 𝑈02 (𝐾2212 − 𝐾4214) ,𝐷8,4 = 𝑈02 (𝐾2432 − 𝐾4434) ,𝐷8,5 = 𝑈02 (𝐾4144 − 𝐾2142) ,𝐷8,6 = 𝑈02 (𝐾2342 − 𝐾4344) ,𝐷8,7 = 𝑈02 (𝐾2442 + 𝐾4224 − 𝐾2222 − 𝐾4444)𝐷8,8 = −1 − 𝑈02 (𝐾2112 + 𝐾4334 − 𝐾2332 − 𝐾4114) .
(A.5)
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