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Abstract Applying the generalized Bose-Einstein con-
densation (GBEC) formalism, we extend the BCS-Bose
crossover theory by explicitly including hole Cooper pairs
(2hCPs). From this, follows a phase diagram with two
pure phases, one with 2hCPs and the other with elec-
tron Cooper pairs (2eCPs), plus a mixed phase with arbi-
trary proportions of 2eCPs and 2hCPs. The special-case
phase when there is perfect symmetry, i.e., with ideal 50-
50 proportions between 2eCPs and 2hCPs, corresponds to
the usual BCS-Bose crossover. Explicitly including 2hCPs
yields an extended BCS-Bose crossover which predicts
improved Tc/TF values for some conventional supercon-
ductors (i.e., with electron-phonon dynamics) when com-
pared with experiment. To do this, we employ the BCS
dimensionless coupling constant λBCS via the BCS gap
equation and compare with the Bogoliubov et al. upper limit
λBCS ≤ 1/2. Another phase diagram presented exhibits
experimental Tc/TF values for some conventional super-
conductors for arbitrary proportions between 2eCPs and
2hCPs as function of Δn = n/nf − 1, where n is the
electron concentration and nf that of unbound electrons at
T = 0. The extended crossover is compared with experi-
mental Tc/TF values as well as to the gap-to-Tc ratio.
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1 Introduction

In the mid-60s, Keldysh et al. [1] assert that the weak
Coulomb interaction corresponds to the assumption that the
mean correlation energy q2/rD is much less than EF , where
q is the elemental electron charge and rD the Debye screen-
ing radius, this condition being satisfied for the relatively
small electron number-densities of n ∼ 1018−1019 cm−3. A
year later Popov [2] suggested a theory of a Bose gas made
up of bound pairs of Fermi particles which in the small den-
sity limit describes a system behaving as a Bose gas whose
particles should form a Bose condensate at low-enough
temperatures.

In 1967, Friedel et al. [3] proposed that “two equations
must be solved in the BCS formalism to obtain the gap equa-
tion at T = 0.” A couple of years later Eagles [4] studied two
simultaneous equations for the BCS gap Δ and its associ-
ated fermionic chemical potential μ. Solutions of these two
simultaneous equations for Tc came to define a so-called
BCS-BEC crossover. Leggett [5] later derived the two basic
crossover equations at T = 0 [6] for any many-fermion
system of identical particles each of mass m whose pair
interaction is described by its S-wave scattering length a. At
T = 0 he obtained the dimensionless number equation
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(where tildes mean in units of the Fermi energy EF ≡
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2k2
F /2m of the associated ideal Fermi gas) and with μ and
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Δ being the zero-temperature fermionic chemical poten-
tial and energy gap, respectively). He also obtained the
dimensionless gap equation at T = 0

π

kF a
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∫ ∞
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dε̃

[
1√
ε̃

−
√

ε̃√
(̃ε − μ̃)2 + Δ̃2

]
. (2)

These two equations were alternately derived as reported in
Ref. [7]. Both these expressions are coupled transcendental
equations to be solved self-consistently for μ and Δ with
both quantities implicitly depending on a. Thus, the two
equations are then valid for any coupling—weak, strong or
intermediate. For weak coupling μ � EF as assumed by
BCS [8]—whose theory is embodied in a single equation,
the BCS gap equation. However, for very strong coupling,
one must have μ � −B2/2 with B2 the two-body (posi-
tive) binding energy of a single pair in vacuo, all assuming
that the two-body potential supports one and only one bound
state as, e.g., the BCS model interaction can be shown [9] to
effectively do so as well.

The BCS-Bose crossover was subsequently discussed by
Nozières et al. [10], Ranninger et al. [11], Randeria et al.
[12], van der Marel [13], Bar-Yam [14], Drechsler and
Zwerger [15], Haussmann [16], Pistolesi and Strinati [17],
among others.

We denote the crossover by “BCS-Bose” instead of by
the more familiar “BCS-BEC” since a BEC cannot occur in
either 2D nor in 1D [18] whereas bosons can form in both
instances.

Boson-fermion (BF) models of SCs as a BEC go back to
the mid-50s [19–22], pre-dating even the BCS-Bogoliubov
theory [23–25]. BF models [19–22, 26–35] posit the exis-
tence of actual bosonic CPs. With a single exception [36] all
BF models neglected the explicit effect of hole CPs included
on an equal footing with electron CPs. This gave a complete
BF model [36–39] at the heart of the GBEC theory to be
described now.

2 GBEC Formalism

The GBEC formalism describes an ideal BF ternary gas
consisting of unpaired electrons (fermions) with Cooper
pairs of electrons (2eCP) and Cooper pairs of holes (2hCP)
as bosons, plus very particular BF interactions. This formal-
ism essentially given [36–39] by the Hamiltonian H = H0+
Hint where H0 is the ideal ternary gas and Hint contains the
BF vertex interactions [36, 37] pictured in Fig. 1.

Defining a simpler, reduced Hint , henceforth called Hred ,
by neglecting nonzero-K terms on the rhs renders an exactly
diagonalizable expression. Then, ignoring these bosons with
center-momentum-of-mass (CMM) K �= 0 (in Hint but not

Fig. 1 The BF interaction hamiltonian from Hint [36, 37] consists
of four interaction vertices each with two-fermion/one-boson creation-
annihilation operators. They show how unpaired electrons (+) and/or
holes (−) bind to form 2e or 2hCPs, or disintegrate into two unbound
fermions

also in H0 as done in BCS theory) and using the Bogoliubov
recipe of replacing b0 and c0 respectively by c-numbers√

N0 and
√

M0 where N0 and M0 are the numbers of K = 0
bosons, one can readily exactly diagonalize [38] the reduced
dynamical operator Ĥred − μN̂ via a Bogoliubov-Valatin
transformation [40, 41] where N̂ and μ are respectively
the total-electron-number operator and chemical potential.
Bringing the neglected CMM K �= 0 terms back into
the picture was recently accomplished via two-time Green
function techniques [42–45].

The thermodynamic (or Landau) potential in the grand
canonical ensemble is then

Ω(T, L3, μ, N0, M0) = −kBT ln
[
Tr(exp{−β(Ĥred − μN̂)})

]

(3)

where Tr is the “trace” of the diagonalized dynami-
cal operator so that Ω(T ,L3, μ, N0, M0) can now be
evaluated explicitly. Here, T is the absolute tempera-
ture and β ≡ 1/kBT . The Helmholtz free energy
is then F(T ,L3, μ, N0, M0) ≡ Ω(T ,L3, μ, N0, M0) +
μN . Taking the negative partial derivative of (3) with
respect to chemical potential, and also minimizing
F(T ,L3, μ, N0, M0) wrt N0 , M0, gives

−∂Ω

∂μ
= N

∂F

∂N0
= 0

∂F

∂M0
= 0. (4)

The first relation is familiar from statistical mechanics; here
it ensures the net charge conservation of the GBEC formal-
ism, i.e., gauge invariance [46]. This is in striking contrast
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with BCS theory which lacks it. The last two requirements
of (4) define a stable thermodynamic state.

The GBEC formalism via (4) leads to three coupled tran-
scendental equations. These determine the thermodynamic-
equilibrium phase diagram with three condensed phases:
two pure BEC phases, one for 2eCPs the other for 2hCPs,
and a mixed phase of arbitrary proportions. The three phases
are determined numerically by solving the three coupled
transcendental equations, and formally depend on three
unknown functions: the electron chemical potential μ(T ),
along with the 2eCP and 2hCP Bose-Einstein (BE) conden-
sate densities n0(T ) and m0(T ). From (4) one obtains two
gap-like equations [36]

2
√
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∞∫
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where E±(0) are the phenomenological energies of bosons
with CMM K = 0, E(ε) ≡ √

(ε − μ)2 + Δ2(ε) is the
familiar gapped Bogoliubov fermion dispersion relation
with Δ(ε) ≡ f+

√
n0(T ) + f−

√
m0(T ) where N(ε) is the

electronic density of states and f±(ε) are the BF vertex-
function interactions as originally defined in Refs. [36, 37].
Additionally, the first of (4) yields the total number density

N/L3 ≡ n = 2nB(T ) − 2mB(T ) + nf (T ) (7)

where nf (T ) is that of the unpaired electrons, while nB(T )

and mB(T ) are respectively those of 2e and 2hCPs in all
bosonic states, ground together with excited, i.e., condensed
and noncondensed. These turn out to be

nB(T ) ≡ n0(T )+
∞∫

0+
dεM(ε)

[
exp

[
β(2Ef + δε − 2μ + ε)

] − 1
]−1

(8)

and

mB+(T )≡ m0(T )+
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0+
dεM(ε)
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β(2μ+ ε−2Ef + δε)
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]−1

(9)

where M(ε) ≡ (2m3/2/π2
�

3)
√

ε is the bosonic density of
states. The Bose distributions here are clear reflections of
the assumed bosonic nature of both kinds of CPs. Finally,
the number density of unpaired electrons at any T turns out
to be

nf (T ) ≡
∞∫

0

dεN(ε)

[
1 − ε − μ
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1
2βE(ε)
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−−−→
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(
2mEf

)3/2
/3π2

�
3 ≡ nf (10)

with the last result first reported in Ref. [47]. Here, Ef is a
“pseudo-Fermi” energy; it coincides precisely with EF only
when nB(T ) = mB(T ), i.e., ideal perfect 50-50 symmetry.

2.1 BCS and BEC Theories Subsumed in GBEC

The BCS and ordinary BEC theories are subsumed [36]
as special cases in the GBEC formalism. If one assumes
perfect 50-50 symmetry between 2e/2hCPs, i.e., n0(T ) =
m0(T ) and nB+(T ) = mB+(T ), the (5) and (6) can be
combined into a single equation. Then, setting μ � EF as
assumed by BCS one readily arrives at the well-known BCS
gap equation

1 = f 2N(μ)

2δε

δε∫

0

dε
1√

ξ2 + Δ(T )2
tanh

[
1
2β

√
ξ2 + Δ(T )2

]

(11)

where ξ ≡ ε − μ, provided one also identifies δε with
�ωD and f 2/2δε with V, the BCS net attraction. In addi-
tion to this, one also recovers the T = 0 condensation
energy exactly [48], and most recently as well [49] as for all
0 ≤ T ≤ Tc.

For the noninteracting BF system, i.e., if f±(ε) = 0 in
(5) and (6), one must put μ = Ef , thus E(ε) = |ε − Ef |
with Ef again the pseudo-Fermi energy of the unpaired
electrons. Then, the total electron number density for this
noninteracting BF system is just

n = 2n0(T ) +
∞∫

0+
dεM(ε)

(
exp β[2Ef + δε − 2μ + ε] − 1

)−1

+
∞∫

0

dεN(ε)

[
1 − ε − μ

E(ε)
(1 − 2 exp[βE(ε)] − 1)−1

]
(12)

where here one allows for the fully asymmetric case
by ignoring the presence of 2hCPs altogether by setting
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mB(T ) = 0 for all T . Determining n0(n, T ) associated with
the remaining 2eCP condensate fraction for 0 ≤ T ≤ Tc,
the critical temperature Tc is then defined as the temperature
below which n0(n, T ) just ceases to vanish as temperature
decreases. The solution [36] is obtained from (12) since
n0(n, Tc) = 0, which yields

Tc � 3.31
�

2

MkB

(
NB/L3

)2/3
. (13)

This is just the BEC formula for an ideal Bose gas with
masses M ≡ 2m and boson particle density NB/L3 ≡
1
2 (n − nf ) where nf ≡ nf (T = 0) can be shown [47] to
be the number density of unpaired electrons at T = 0. From
this one arrives at the universal BEC ratio

Tc/TF = (1/2) [2/3(3/2)ζ(3/2)]2/3 � 0.218.

3 Extended BCS-Bose Crossover

As mentioned, in the 60’s Friedel et al. [3] noted that BCS
theory needs an additional equation whenever the chemi-
cal potential μ is allowed to differ from the Fermi energy
EF as must occur when coupling is not weak. They intro-
duced a new expression to complete the picture, essentially
a number equation for μ. Eagles [4] further clarified the
picture by explicitly adding by hand a naturally obvious
number equation to the BCS gap equation. This related
the critical temperature Tc with carrier concentration n and
became known as the BCS-BEC “crossover” theory which
we instead call more correctly BCS-Bose.

Then, an extended BCS-Bose crossover emerges due to
having postulated bosonic 2hCPs explicitly in addition to
the 2eCPs. Hence, one now deals with the number densi-
ties of the condensed 2hCPs, m0(T ), the excited 2hCPs,
mB+(T ), alongside the condensed 2eCPs n0(T ) and the
excited 2eCPs nB+(T ). Having perfect symmetry between
2eCPs and 2hCPs, i.e., with half-and-half proportions, when
n0(T ) = m0(T ) and nB+(T ) = mB+(T ) but for μ �=
EF one recovers the original (still unextended) BCS-Bose
crossover. Thus, one finds that the gap-like (5) can be
summed with the gap-like (6) to yield a single equation.
Explicitly, the equations of this crossover at T = Tc implies
that Δ(Tc) = 0 so that n0(Tc) = m0(Tc) = 0 which leaves

[E+(0)−E−(0)]=f 2

Ef +�ωD∫

Ef −�ωD

dεN(ε)
1

|ε − μ| tanh
(

1
2βc|ε −μ|

)

(14)

with βc ≡ 1/kBTc, so the number equation is then

n = nf (Tc)

=
∞∫

0

dεN(ε)

[
1 − ε − μ

|ε − μ|
(

1−2 (exp[βc|ε − μ|]+1)−1
)]

.

(15)

Note that if μ = EF identically one recovers the original
BCS gap equation in the weak-coupling limit. Neverthe-
less, in this study, we solve the equations for all couplings
including intermediate.

From Fig. 2, one notes that two coupling extremes are
present. Weak coupling is around n/nf � 1 but in this
regime one has very low Tc/TF s as implied already by BCS
theory; this extreme results upon assuming μ = EF with
n/nf = 1 (perfect ideal symmetry) and one then requires
solving just one (gap-like) equation. On the other hand,
strong coupling corresponds to n/nf → ∞, e.g., nf → 0
as in this extreme all electrons are paired, thus leaving a pure
noninteracting Bose gas implying no interaction (f = 0)
between unpaired electrons. This leads one to solve only the
number equation.

Limits for large n/nf are marked for each phase
with a: (i) symbol 
 for the pure 2hGBEC phase with
Tc/TF → 1.507, (ii) symbol ◦ for the familiar BCS-Bose

Fig. 2 Tc/TF vs. n/nf for all three condensed phases. The dif-
ferent phase boundaries associated with the extended crossover are
evident. Thick curve, labeled 2eCPs phase, is obtained by simultane-
ously solving (5) with (7); thin curve labeled 2hCPs by solving (6) with
(7) and short-dashed curve from simultaneously solving (5), (6) and
(7) with perfect symmetry, i.e., the unextended BCS-Bose crossover.
Long-dashed curve is BEC curve and is shown here for comparisons
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crossover which corresponds to perfect ideal symmetry with
Tc/TF → 0.988, and (iii) symbol � for the pure 2eGBEC
with Tc/TF → 0.701. In Fig. 2, the blue shaded area
(online) bounded by pure 2h/2eGBEC phases is associated
with the more general mixed extended crossover since one
has arbitrary proportions of 2eCPs and 2hCPs. Inside this
area the short-dashed curve associated with the special case
of the extended crossover with equal proportions of 2eCPs
and 2hCPs is shown; this coincides precisely with the usual
unextended BCS-Bose crossover.

As T increases the entire weak-coupling system is driven
to a crossover and finally to the strong-coupling regime; in
this latter extreme region there remain no unpaired elec-
trons leaving only a binary gas of bosonic 2eCPs and 2hCPs.
As suggested by crossover authors, high-Tc superconductors
can be expected to be in the crossover region where one has
Tcs increased by several orders of magnitude higher than
BCS theory predicts for conventional SCs. Resulting Tcs are
at least three orders of magnitude higher than those of BCS,
this dramatic Tc enhancement being due to the mere pres-
ence of 2hCPs. This behavior is analogous to the relativistic
ideal Bose gas [50] where the mere presence of antibosons
increases Tc wrt that with no antibosons present.

Then, there is an intermediate-coupling regime between
weak- and strong-coupling. Furthermore, one sees that in
the intermediate region Tc/TF is enhanced wrt BCS theory,
an aspect of the theory agreeing with Friedel et al. [3] that
a crossover is needed to address A3B compounds as well
other kinds of SCs. An important role thus is being played
by the dimensionless number density n/nf because of the
appreciable increase in Tcs solely by varying the charge-
carrier density just as Eagles [4] suggested. In addition,
the chemical potential exhibits the intermediate regime cou-
pling for each phase of the extended crossover presented
here and turns out to be very useful since one can then
correctly predict Tc/TF s for some well-known elemental
SCs.

Figure 3 shows experimental Tc/TF s (ninth column in
Table 1) as function of Δn ≡ n/nf − 1 and are com-
pared with two pairs of theoretical curves of the extended
crossover: a) top pair of curves labeled λBCS = 1/2 corre-
spond to the Bogoliubov et al. upper limit with �ωD/EF =
0.002, b) bottom pair of curves are for λBCS = 1/5 with
�ωD/EF = 0.001. These two values of �ωD/EF are typ-
ical for conventional SCs; black dots refer to experimental
values of Tc/TF for each SC associated with perfect ideal
symmetry between 2eCPs and 2hCPs, i.e., Δn = 0 (weak-
coupling regime). One sees that SC empirical data of Tc/TF

falls within the theoretical curves of the extended crossover.
Table 1 lists some elemental SCs such as Nb, Hg, Al,

In, Pb, and Sn. It shows the theoretical Tc/TF predicted

Fig. 3 Theoretical curves of extended crossover compared with exper-
imental values of Tc/TF for aforementioned SCs. Thick curves labeled
2eGBEC phase are obtained by simultaneously solving (5) with (7);
thin curves labeled 2hGBEC by solving (6) with (7). Black dots mark
experimental Tc/TF values with Δn = 0 where error bars fall within
dot size. Top pairs of curves labeled as λBCS = 1/2 (the Bogoli-
ubov et al. upper limit, with �ωD/EF = 0.002) while bottom pairs
of curves are for λBCS = 1/5 with �ωD/EF = 0.001. These Debye-
energy values scaled with Fermi energy are typical for conventional
superconductors

by the extended crossover for each SC and compared with
experiment and with BCS theory. The BCS values of Tc/TF

are calculated via the BCS gap-Tc ratio 2Δ(0)/kBTc �
3.53 using empirical data for the energy gap at T = 0.
Extended crossover values for Tc/TF are calculated by solv-
ing the three (5), (6) and (7) for perfect 50-50 symmetry,
i.e., n/nf = 1. Note that the extended crossover predicts
critical temperatures for the aforementioned SCs quite well
even for the so-called BCS theory “bad actors” [51]. Here,
one solves three equations instead of the two equations sug-
gested by Keldysh et al. [1], Popov [2], Friedel et al. [3],
Eagles [4] and finally Leggett [5], rather than just one (the
gap) equation with μ = EF as implemented originally in
BCS theory. Also shown is the gap-to-Tc ratio for the listed
SCs (tenth column) this ratio being calculated from exper-
imental data and is compared with that of the extended
crossover (eleventh column). These values of the extended
crossover are obtained by varying n/nf slightly from unity
(twelfth column) even for the BCS theory “bad actors” Hg
and Pb. This follows the charge-carrier sign from Ref. [52]
according to whether n/nf is greater or less than 1.
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Table 1 Experimental data for some conventional (i.e., presumed electron-phonon driven) SCs compared with results from the extended BCS-
Bose crossover theory

�D TF Tc λBCS 2Δ(0) Tc/TF (×10−5) 2Δ(0)/kBTc

(×105)a expt BCS Extended
crossover

expt Extended
crossover

n/nf

Al 394a 1.36 (1.17 ± 0.003)e 0.17 (0.32 ± 0.03)j 0.87 0.82 0.87 3.17 3.17 1.0000075

In 108b 1.00 (3.41 ± 0.001)f 0.28 (1.05 ± 0.03)j 3.40 3.64 3.42 3.57 3.57 1.0000480

Sn(w) 195b 1.18 (3.72 ± 0.001)f 0.24 (1.11 ± 0.03)j 3.15 3.26 3.13 3.46 3.46 1.0000410

Hg 88b 0.83 (4.15 ± 0.001)d 0.31 (1.55 ± 0.07)i 5.00 6.48 4.99 4.33 4.33 1.0000975

Pb 96b 1.10 (7.20 ± 0.8)g 0.37 (2.68 ± 0.06)j 6.54 8.45 6.53 4.32 4.32 1.0001263

Nb 276b 0.62 (9.25 ± 0.010)c 0.28 (3.05 ± 0.05)h 14.96 17.12 14.90 3.83 3.83 1.0002692

Debye (�D), Fermi (TF ) and critical temperatures (Tc) are in kelvin units (K) and λBCS is the dimensionless BCS coupling parameter. Here, λBCS

is determined via the BCS gap equation. Remarkably, the values obtained seem to corroborate the Bogoliubov et al. upper limit λBCS ≤ 1/2. The
BCS gap-to-Tc ratio formula 2Δ(0)/kBTc � 3.53 was used to calculate BCS Tc/TF values, using energy gap empirical data at T = 0 in meV
units. Tc/TF values predicted by the extended crossover are given for n/nf = 1, while calculated 2Δ(0)/kBTc values were adjusted with a n/nf

value near unity as shown in last column. Values in italics are the BCS “bad actors” [51]

Experimental data are from
aN.W. Ashcroft and N.D. Mermin, Solid State Physics (Saunders College Publishing, USA, 1976) pp. 38 and 729
b C.P. Poole, Jr., H.A. Farah, R.J. Creswick and R. Prozorov, Superconductivity (Academic Press, Elsevier, New York, 2007) pp.2-3 and 62
cD.K. Finnemore, T.F. Stromberg, and C.A. Swenson, Phys. Rev. 149 , 231 (1966) dD.K. Finnemore, D.E. Mapother, and R.W. Shaw, Phys. Rev.
118, 127 (1960)
eT. E. Faber, Proc. R. Soc. Lond. A 231, 353 (1955) f D.K. Finnemore, and D.E. Mapother, Phys. Rev. 140, A507 (1965)
gB.J.C. Van der Hoeven, Jr. and P.H. Keesom, Phys. Rev. 137, A103 (1965) hP. Townsend and J. Sutton, Phys. Rev. 128, 591 (1962)
iP. Richards and M. Tinkham, Phys. Rev. 119, 575 (1960) j I. Giaver and K. Megerle, Phys. Rev. 122, 1101 (1961)

4 Conclusions

In the GBEC formalism, one defines a BCS-Bose crossover
extended with explicit inclusion of 2hCPs. Starting from
an ideal BF ternary gas with particular BF vertex inter-
actions, the extended crossover is found to be defined by
two thermodynamic-equilibrium requirements along with a
well-known result from statistical mechanics that guaran-
tees charge conservation. The extended crossover increases
the critical temperature Tc several orders higher wrt BCS
theory upon just slightly varying n/nf around 1 and without
abandoning electron-phonon dynamics.

Guided by the Bogoliubov et al. upper limit of λBCS ≤
1/2 one finds that the extended crossover predicts Tc/TF

values of some conventional SCs with perfect symmetry
between 2eCPs and 2hCPs which agree reasonably well
with experimental data. Also, the gap-to-Tc ratio is adjusted
by varying the n/nf very slightly around unity for the BCS
“bad actors” Hg and Pb.
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