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Abstract
A system of two coupled nonlinear equations was calculated to describe the thermocapillary evolution of the free surface
deformations of two liquid layers coating both sides of a wall of finite thickness and thermal conductivity in the absence
of gravity. The equations were obtained under the small wavenumber approximation. A temperature gradient appears
perpendicular to the liquid-wall-liquid system due to the temperature difference between the atmospheres outside the free
surfaces of both fluid layers. The linear growth rate of the system was investigated with respect to a variety of parameters.
Under some conditions, two stationary modes and one oscillatory mode between them were found. The second stationary
mode was concluded to be always stable. It was also found that under different conditions only stationary convection is
possible. These results depended on the relative thickness of the two fluid films. It is of interest to know if the coupled
free surface perturbations presented a nonlinear sinuous or varicose mode. Thus, a two-dimensional numerical analysis was
performed to find out which conditions lead to the sinuous or to the varicose mode of instability.

Keywords Thin liquid film · Thermocapillarity · Marangoni convection · Solid interlayer · Small wavenumber
approximation

Introduction

Liquid films are susceptible to thermocapillary instabilities
due to temperature differences between the substrate and
the atmosphere. It has been shown by Pearson (1958) that
after a large enough temperature difference, represented by
the Marangoni number Ma, the liquid layer destabilizes if
it is heated from the wall. On the contrary, if it is cooled
from the wall (negative Marangoni number) the layer is
always stable. These results were obtained assuming that
the free surface was flat. Free surface deformations were
first introduced by Scriven and Sternling (1964). It was
found that the critical temperature difference, or the critical
Marangoni number MaC , needed for instability was smaller
than that of the flat surface. It was also found that when
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cooling from the wall, Ma < 0, the layer is always stable.
The effects of gravity, in the absence of natural convection,
were first taken into account by Takashima (1981a, b) in the
stationary and time dependent case, respectively. Gravity
has a restoring effect on the free surface deformation.
However, in the oscillatory case some perturbations may
destabilize when Ma < 0 Takashima (1981b). For a flat free
surface, the double diffusive problem was investigated by
Mctaggart (1983) and the viscoelastic problem by Getachew
and Rosenblat (1985). When the viscosity depends on
temperature the stability changes as shown in Slavtchev
and Ouzounov (1994), Kalitzova-Kurteva et al. (1996) and
by Slavtchev et al. (1998) for stationary and oscillatory
Marangoni convection with a deformable free surface.
These phenomena have also been investigated by Dávalos-
Orozco and You (2000) and by Moctezuma-Sánchez and
Dávalos-Orozco (2015) but for a cylindrical geometry.

In experiments the substrate has finite thickness and
thermal conductivity, characteristics not always taken into
account. Therefore, research including those wall properties
has been done by Takashima (1970), Yang (1992), Char
and Chen (1999), Gangadharaiah (2013) and by Hernández
Hernández and Dávalos-Orozco (2015) for a viscoelastic
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fluid. This subject has also been investigated by Dávalos-
Orozco (2012, 2014, 2015, 2016) for liquid films flowing
down walls.

Thermocapillarity was investigated in two stratified
liquid layers in the presence of buoyancy by Simanovskii
et al. (2015, 2016). In contrast, the problem of two fluid
layers under buoyancy effects alone but separated by a
solid interlayer was investigated by Catton and Lienhard
(1984) and Lienhard and Catton (1986). These last two
papers showed that the thermal interaction of the two fluid
layers when heated from below. For some magnitudes of the
parameters the two fluid layers present natural convection,
for other values only one is unstable.

The investigation of the thermal interaction of two
fluid layers coating both sides of a solid interlayer when
subjected to thermocapillary convection is the purpose
of the present paper. The motivation is a theoretical
investigation of an outer space experiment in a manned
artificial satellite. It is assumed that the two liquid
films present surface deformation. Therefore, the thermal
interaction of both deformations may result in the formation
of a sinuous or a varicose mode of instability, as found
in the problem of liquid sheets. In the varicose mode the
perturbations are out of phase by 180 degrees. Publications
related with this problem are those by Oron et al. (1995a,
b), Dávalos-Orozco (1999), Fu et al. (2013) and Tong et al.
(2014). Similar conditions occur when the liquid layer is
coating a deformable membrane Dávalos-Orozco (2001).
The relevance of one kind of the two instability modes is
determined in the nonlinear solution and depends on the
parameters of the system.

The next section contains the description of the problem
and the equations of motion along with their boundary con-
ditions. The numerical results for the linear case are shown
in “Linear Stability”. The nonlinear modes of instability
are investigated in “Nonlinear Sinuous and Varicose Modes
of Instability”. The conclusions are given in “Conclusions”.

Two Liquid Layers Coating Both Sides
of a SolidWall

The system under research consists of two liquid layers
coating both sides of a solid wall with finite thickness and
thermal conductivity. The free surfaces of the fluids are
allowed to deform. In non-dimensional form the system is
sketched in Fig. 1. Gravity is assumed to be zero.

The z-axis is perpendicular to the wall and the x-axis is
located at the interface of fluid 2 and the wall. The y-axis
is perpendicular to both of them in a right-handed frame of
reference. The mean non-dimensional thickness of fluid 2 is
one, the mean non-dimensional thickness of fluid 1 is d and
the non dimensional thickness of the wall is dW .

(a)

(b)

Fig. 1 Two sketches of the system. a sinuous mode. b varicose mode

In Fig. 1a and b it was assumed that the atmosphere
below the free surface of fluid 1 was hotter than that
above fluid 2. For a sufficiently large temperature difference
one of the fluid layers (that of fluid 2) starts to move
due to thermocapillary convection. However, the other one
(which in other circumstances should be stable), feels
the perturbations of the unstable layer through the solid
interlayer and is also able to move. In other words, the
stability of the two fluid layers depends on the coupling they
have through the solid wall.

The equations of the two fluids and the wall and
their corresponding boundary conditions were made non
dimensional as follows. The distance in the z-direction was
measured with d2 the thickness of fluid 2, the distance in
the x- and y-direction by λ/2π = d2/ε, where λ was a
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representative longitude of the free surface deformation.
The time was scaled with (λ/2π)2 /α2 = d2

2/ε2α2 where α2

is the thermal diffusivity of fluid 2, velocity with α2/d2 and
pressure with ρ2α2ν2/d

3
2 where ρ2 and ν2 are the density

and the kinematic viscosity of fluid 2, respectively. The
temperature was scaled with �T = TL − TU , where TL is
the temperature of the atmosphere below fluid 1 and TU is
the temperature of the atmosphere above fluid 2. The small
parameter ε = 2πd2/λ was used to scale the equations of
motion and boundary conditions. It was assumed that in the
small wavenumber approximation ε < 1.

According to the lubrication approximation (see Oron et
al. 1997), the expansions of the non-dimensional dependent
variables in terms of ε are

u = ε(u0 + εu1 + · · · ), v = ε(v0 + εv1 + · · · ),
w = ε2(w1 + εw2 + · · ·),
p = p0 + εp1 + · · · , T = T0 + εT1 + · · · ,

Tw = Tw0 + εTw1 + · · · . (1)

u1 = ε(u10 + εu11 + · · · ), v1 = ε(v10 + εv11 + · · · ),
w1 = ε2(w11 + εw12 + · · ·),
p1 = p10 + εp11 + · · · , T1 = T10 + εT11 + · · · . (2)

Under this lubrication approximation, the Marangoni and
surface tension numbers defined below do not need an
expansion in terms of ε. As will be seen presently, the reason
is that the surface tension number appears in the pressure
at the lowest order and no further approximation of the
pressure is needed. The Marangoni number appears for the
first time at the first order of the velocity boundary condition
and the velocity does not need a further approximation
(see Dávalos-Orozco 2012, 2014, 2015, 2016). The scaled
non dimensional equations of motion, continuity and heat
transfer of fluid 2 are:

1

Pr

(
ε2ut + εuux + εvuy + wuz

)
= −εpx + ε2uxx

+ε2uyy + uzz. (3)

1

Pr

(
ε2vt + εuvx + εvvy + wvz

)
= −εpy + ε2vxx

+ε2vyy + vzz. (4)

1

Pr

(
ε2wt + εuwx + εvwy + wwz

)
= −pz + ε2wxx

+ε2wyy + wzz. (5)

wz = −εux − εvy . (6)

ε2Tt + εuTx + εvTy + wTz = ε2Txx + ε2Tyy + Tzz. (7)

The scaled non dimensional equations of motion,
continuity and heat transfer of fluid 1 are:

1

Pr

(
ε2u1t + εu1u1x + εv1u1y + w1u1z

)
= − ε

ρ
p1x

+μ

ρ

(
ε2u1xx + ε2u1yy + u1zz

)
. (8)

1

Pr

(
ε2v1t + εu1v1x + εv1v1y + w1v1z

)
= − ε

ρ
p1y

+μ

ρ

(
ε2v1xx + ε2v1yy + v1zz

)
. (9)

1

Pr

(
ε2w1t + εu1w1x + εv1w1y + w1w1z

)
= − 1

ρ
p1z

+μ

ρ

(
ε2w1xx + ε2w1yy + w1zz

)
. (10)

w1z = −εu1x − εv1y . (11)

ε2T1t + εu1T1x + εv1T1y + w1T1z = α
(
ε2T1xx + ε2T1yy + T1zz

)
.

(12)

and the equation of the temperature of the solid wall is:

ε2Twt = χ
ρw

ρ2

cpw

cp2

(
ε2Twxx + ε2Twyy + Twzz

)
. (13)

where T, T1 and Tw are the temperatures of fluid 2, fluid
1 and wall, respectively. Here, (u, v, w ), (u1, v1, w1) are
the velocity vectors of fluid 2 and fluid 1. p and p1 are the
pressures of fluid 2 and fluid 1, respectively. Pr = ν2/α2

is the Prandtl number, ρ = ρ1/ρ2, μ = μ1/μ2 and
α = α1/α2, where ρ1, μ1 and α1 are the density, dynamic
viscosity and thermal diffusivity of fluid 1, respectively.
In the equation of heat diffusion in the wall there are the
following parameters: χ = Kw/K2 where Kw is the thermal
conductivity of the wall, K2 is the thermal conductivity of
fluid 2, ρw is the density of the wall and cpw is the heat
capacity of the wall.

The boundary conditions for the velocity and temperature
in fluid 2 were as follows. The fluid sticks to the wall. Then

u = v = w = 0. at z = 0 (14)

The normal stress boundary condition at the free surface was

−p + PU − 2

N2
[ε3(uxh

2
x + vyh

2
y) + ε3(uy + vx)hxhy

−ε(vz + εwy)hy − ε(uz + εwx)hx + wz]
= 1

N3
S

[
(1 + ε2h2

y)hxx + (1+ ε2h2
x)hyy − 2ε2hxhyhxy

]
.

at z = h(x, y, t) (15)

where N =
√

1 + ε2h2
x + ε2h2

y , h(x, y, t) = 1+H(x, y, t)

and H(x, y, t) is the free surface deformation of fluid 2.



212 Microgravity Sci. Technol. (2018) 30:209–228

Besides, PU is the pressure of the atmosphere outside fluid
2 and S = ε2γ2d2/ρ2ν2α2 is the scaled surface tension
number and γ2 is the surface tension of fluid 2. The balance
of shear stresses and surface tension temperature gradients
on the free surface was represented by the shear stress
conditions in two directions. The first shear stress boundary
condition was:

1

N

[
ε(wz − εux)hx − 1

2
ε2(uy + vx)hy + 1

2
(uz + εwx)(1 − ε2h2

x)

− 1

2
ε2(εwy + vz)hxhy

]
= −Ma(εTx + εhxTz). at z = h(x, y, t)

(16)

and the second shear stress boundary condition was:

1

N

[
εhy

(
ε3uxh2

x − εvy

(
1 + ε2h2

x

)
+ wz

)

+1

2
ε2 (

uy + vx

)
hx

(
ε2h2

y − 1 − ε2h2
x

)

−ε2 (εwx + uz) hxhy + 1

2

(
εwy + vz

) (
1 + ε2h2

x − ε2h2
y

)]

= −Ma

N

[
−ε3Txhxhy + εTy

(
1 + ε2h2

x

)
+ εTzhy

]
.

at z = h(x, y, t) (17)

where Ma = −(dγ2/dT )�T d2/2ρ2ν2α2 is the Marangoni
number of fluid 2. The kinematic boundary condition of
fluid 2 was

ε2ht + εuhx + εvhy − w = 0. at z = h(x, y, t) (18)

The boundary conditions of the temperature of fluid 2
and the wall are the following. At the free surface

1

N

(
εhxTx + εhyTy − Tz

) = BiT . at z = h(x, y, t)

(19)

T = Tw and Tz = χTwz. at z = 0 (20)
where Bi = Qh2d2/K2 is the Biot number and Qh2 is the
heat transfer coefficient at the interface of fluid 2.

The boundary conditions for the velocity and temperature
of fluid 1 were as follows. Again, the fluid sticks to the wall.
Therefore

u1 = v1 = w1 = 0. at z = −dw (21)

The normal stress boundary condition at the free surface was

−p1 + PL − 2μ

N2
1

[ε3(u1xh2
1x + v1yh2

1y) + ε3(u1y + v1x)h1xh1y

+ε(v1z + εw1y)h1y + ε(u1z + εw1x)h1x + w1z]
= γ S

N3
1

[(1 + ε2h2
1y)h1xx + (1 + ε2h2

1x)h1yy − ε2h1xh1yh1xy ].
at z = −dw − h1(x, y, t) (22)

where N1 =
√

1 + ε2h2
1x + ε2h2

1y , h1(x, y, t) = d +
H1(x, y, t) and H1(x, y, t) is the free surface deformation
of fluid 1. Besides, PL is the pressure of the atmosphere
outside fluid 1 and γ = γ1/γ2 where γ1 is surface tension
of fluid 1. The balance of shear stresses and surface tension
temperature gradients on the free surface of fluid 1 were the
first shear stress boundary condition:

μ

N1

[
ε(w1z − εu1x)h1x − 1

2
ε2(u1y + v1x)h1y

−1

2
(u1z + εw1x)(1 − ε2h2

1x)

+1

2
ε2(εw1y + v1z)h1xh1y

]
= −γT Ma(εT1x − εh1xT1z).

at z = −dw − h1(x, y, t) (23)

and the second shear stress boundary condition:

μ

N1

[
−εh1y

(
ε3u1xh

2
1x − εv1y

(
1 + ε2h2

1x

)
+ w1z

)

−1

2
ε2 (

u1y + v1x

)
h1x

(
ε2h2

1y − 1 − ε2h2
1x

)

−ε2 (εw1x + u1z) h1xh1y

+1

2

(
εw1y + v1z

) (
1 + ε2h2

1x − ε2h2
1y

)]

= −γT Ma

N1

[
ε3T1xh1xh1y − εT1y

(
1 + ε2h2

1x

)
+ εT1zh1y

]
.

at z = −dw − h1(x, y, t) (24)

where the ratio is defined as γT = (dγ1/dT )/(dγ2/dT ).
The kinematic boundary condition of fluid 1 was

ε2h1t+εu1h1x+εv1h1y−w1 = 0. at z = −dw−h1(x, y, t)

(25)

The boundary conditions of the temperature of fluid 1
and the wall were the following. At the wall

Tw = T1 and
χ

K
Twz = T1z. at z = −dw (26)

and at the free surface

1

N1

(−εh1xT1x − εh1yT1y + T1z

) = Bi1

d
(T1 − 1) .

at z = −dw − h1(x, y, t) (27)

where K = K1/K2 and Bi1 = Qh1d1/K1 is the Biot
number of fluid 1 and Qh1 is the heat transfer coefficient at
the interface of fluid 1.

As can be seen in the equations and boundary conditions
presented above, their terms present different powers of ε.
That difference plays an important role in the lubrication
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approximation (Oron et al. 1997). The reason is that it is
possible to obtain linear differential equations at each order
of ε after substitution of Eqs. 1 and 2. Equations obtained
at higher orders of ε include inhomogeneities which are
derived from solutions of equations obtained at lower
orders. The same method was applied to the corresponding
boundary conditions.

With the boundary conditions it was possible to calculate
the temperatures and pressures of the system at the lowest
order in the lubrication approximation. Then, at the lowest
order, the pressures of fluid 2 and fluid 1 were

p0 = PU − S∇2⊥h (28)

p10 = PL − γ S∇2⊥h1 (29)

where ∇2⊥ = ∂2/∂x2 + ∂2/∂y2. The pressures PU and PL

are different because they come from different atmospheres.
They are uniform in space and therefore will not appear
in the final evolution equations given below. As explained
above, in the lubrication approximation only the pressures
in Eqs. 28 and 29 are required and for that reason there is
no need to expand S in terms of ε. At the lowest order the
temperatures of fluid 2, wall and fluid 1 were:

T20(z) = 1

den
[1 − Bi(z − h)] (30)

Tw0(z) = 1

den

[
1 − Bi

χ
(z − χh)

]
(31)

T10(z) = 1

den

[
1 − Bi

K

(
z + dw − K(

dw

χ
+ h)

)]
(32)

where the denominator was defined as

den = Bi

(
h + h1

K
+ dw

χ

)
+ 1 + d

K

Bi

Bi1
(33)

Notice in Eq. 32 that the temperature of fluid 1 in fact
satisfied the boundary conditions even though Bi and h

appear in its expression. It should be remembered that
h1 and Bi1 appear in the denominator den Eq. 33 and
that it was possible to satisfy the free surface boundary
condition Eq. 27 and all the others. The same can be said
about the solution of the temperaure of the wall Eq. 31.
It is important to point out here the relevance of the
denominator den which is the thermal interaction factor
between the two fluids in the evolution equations of the
two free surface perturbations taking into account that the
denominator den is a function of x, y and t through the free
surface deformations h(x, y, t) and h1(x, y, t).

Notice that the procedure only needs solutions up to
the first order in the approximation. For that reason,
there is no need to expand in terms of ε the Marangoni
number Ma which first appears at first order. The following

nonlinear evolution equations are obtained for the free
surface deformations of fluid 2 and fluid 1. Therefore,

ht+1

3
S∇⊥·

[
h3∇⊥

(
∇2⊥h

)]
−Ma∇⊥·

[
h2∇⊥

(
1

den

)]
= 0.

(34)

and

h1t + 1

3

γ S

μ
∇⊥ ·

[
h3

1∇⊥
(
∇2⊥h1

)]
+ Ma

γT

μ

d

K

Bi

Bi1
∇⊥

·
[
h2

1∇⊥
(

1

den

)]
= 0. (35)

The Eqs. 34 and 35 have a symmetric presentation.
In what follows a discussion is given about the minus sign

in front of Ma in Eq. 34 and the plus sign in front of the Ma
in Eq. 35. In Eq. 34 the minus sign seems to be destabilizing
but expanding the spatial derivatives, terms with minus and
plus sign appeared. The term with minus sign appeared in
the linear theory. The plus sign in the Ma term in Eq. 35
seems to be stabilizing (it is well known that this is the case
if fluid 2 was absent). However, the sign in front of each
term can be decided only after expanding completely the
spatial derivatives of different orders of den. Some terms of
Ma were negative and other terms had positive signs. The
one which appeared in the linear theory was positive. In this
way, the thermal coupling between the two fluids through
the wall is able to destabilize the whole system by means of
the coupled nonlinear evolution Eqs. 34 and 35.

Those coupled Eqs. 34 and 35 reduce to one in the limit
when the relative thickness of fluid 1 tends to zero, that
is d → 0. In this limit, h1 = d + H1 → 0 because the
perturbation H1 should be zero when there is no fluid layer.
The denominator shows no coupling and reduces to den =
Bi (h + dw/χ) + 1 (see Kabova et al. 2006 and Dávalos-
Orozco 2012). Notice that the limit χ → ∞ only has effect
in the denominator ”den”, the place where it appears. In
previous papers (Dávalos-Orozco 2012, 2014, 2015, 2016),
which included the thickness of the wall, this limit is
equivalent to making zero the ratio dw/χ which corresponds
to a wall of zero thickness, therefore heat is conducted very
well. This is why that ratio is written explicitly in den. The
other terms in den show the influence the ratio of the heat
conductivity of the fluids has on the thermal interaction and
consequently on the instability.

Linear Stability

Equations 34 and 35 have been linearized to understand
the instability of the coupled fluid layers. A normal mode
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separation of variables was assumed for the amplitudes of
free surface deformations of the two fluids. They are:

H(x, y, t) = A exp
[
i
(
kxx + kyy

) + �t
]

. (36)

H1(x, y, t) = B exp
[
i
(
kxx + kyy

) + �t
]

(37)

where � =  + iω,  is the growth rate and ω is the
frequency of oscillation of the perturbations. The following
system of algebraic equations is obtained after substitution:[

�

k2
+ 1

3
Sk2 −

(
MaBi

den2
L

)]
A− 1

K

(
MaBi

den2
L

)
B = 0 (38)

from Eq. 34 and

(
MaBi

den2
L

)
γT

μ

d3

K

Bi

Bi1
A +

[
�

k2
+ 1

3

γ d3

μ
Sk2 +

(
MaBi

den2
L

)
γT

μ

d3

K2

Bi

Bi1

]
B = 0 (39)

from Eq. 35, where k2 = k2
x + k2

y and

denL = Bi

(
1 + d

K
+ dw

χ

)
+ 1 + d

K

Bi

Bi1
(40)

appears due to the linearization of 1/den and its powers (see
Eq. 33).

The solvability condition of the system of Eqs. 38 and 39
is its determinant zero:

[
�

k2
+ 1

3
Sk2 −

(
MaBi

den2
L

)]
×

[
�

k2
+ 1

3

γ d3

μ
Sk2 +

(
MaBi

den2
L

)
γT

μ

d3

K2

Bi

Bi1

]

+
(

MaBi

den2
L

)2
γT

μ

d3

K2

Bi

Bi1
= 0 (41)

which gives a quadratic equation for �. The two solutions
have a radical. If the radicand is positive the solutions are
real and the growth rate can be positive (instability grows
with time), zero (criticality) or negative (stable perturbation
which decreases in time). If the radicand is negative, �

is complex and the imaginary part is the frequency of
oscillation of a perturbation which grows in time if the
real part is positive or decreases in time if the real part is
negative.

The number of parameters is too large. Then from now on
it is assumed in the linear and nonlinear problem that fluid
2 and fluid 1 are the same and that the atmospheres outside
them have the same physical properties but with different
temperatures as shown in Fig. 1. In that case, the following
parameters are fixed: α = μ = γ = γT = K = 1 and
Bi1 = Bid . Even under these simplifications the system
is very complex. However, in the linear problem it is not
necessary to fix S and Bi because the solutions to Eq. 41
can be written as:

�p = 1

2
k2

{
−

[
k2

(
d3 + 1

)
+ Ap

(
d2 − 1

)]

±
[
k4

(
d3 − 1

)2 + 2Apk2
(
d3 − 1

) (
d2 + 1

)

+A2
p

(
d2 − 1

)2
] 1

2
}

(42)

Here �p = �/(S/3) = p + iωp and

Ap = 3MaBi

Sden2
(43)

The solution with the plus sign is called the first solution
and that with the minus sign is called the second solution.
Notice that the flow is stable when d = 1. It is found that
the stability has different results when d > 1 from when
d < 1. This difference is made clear with some exact and
approximate analytical results found from Eq. 42. If the flow
is stationary, the critical wavenumber kC was found to be

k2
CS = ApCS

d − 1

d
(44)

Notice that there is only one root. Clearly, from this result, it
is not possible to have a critical wavenumber for stationary
convection if ApC > 0 and d < 1 or else, if ApC < 0
and d > 1. This will have important consequences in the
results presented below. The approximate wave number of
the maximum growth rate for stationary convection was

k2
maxstat = Apmaxstat

(
d2 − 3d − 3 + √

d4 + 10d3 + 19d2 + 18d + 9

4
(
d2 + d + 1

)
)

(45)

which is a good approximation for d > 2 and Apmaxstat >

0.
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Now a discussion is given for the solutions with d < 1. In
this case stationary and oscillatory convection are possible.
In the stationary case, when the radicand is positive in the
solutions Eq. 42 of �, there is no critical wavenumber. The
reason is that the first and second solutions merge for a finite
value of p and the stationary curve never touches the k axis
(p = 0). Besides, the second mode of the first solution
found after the last wavenumber of oscillatory convection
(see below) is always stable. However it is possible to

calculate an approximate wavenumber corresponding to the
maximum growth rate. It was found as

k2
maxstatd<1 = Amaxstatd<1

12

[
10 −

(
rm + 1

rm

)
+ i

√
3

(
rm − 1

rm

)]

(46)

where

rm = 3
√

−1 − 54d + 6d
√

3 + 81d2 (47)

(a) (b)

(c)

Fig. 2 p vs k. Only stationary convection (first solution, dashdotted line) for d > 1. There exists a critical Marangoni number MaC (p = 0).
The second solution (solid line) of p is always stable. a d = 2, b d = 4, c d = 6. a Ap = 0.1, b Ap = 0.3 and c Ap = 0.5
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Notice that k2
maxstatd<1 is a complex number. However,

when taking the square root the imaginary part gives a value
of the order 10−11. The formula is good up to Ap = 0.5.

Now, when d < 1 and the radicand in Eq. 42 is negative, it
is possible to have oscillatory convection. The wavenumber
k2
CO1 after which oscillations start to appear was

k2
CO1 = ApCO1

1 − d

d2 + d + 1
(48)

This is also the location where the first and second
solutions of � merge to change into oscillatory flow. The
wavenumber k2

CO2 where oscillations end was

k2
CO2 = ApCO2

(d + 1)2

d3 − 1
(49)

(a) (b)

(c)

Fig. 3 Scaled p vs k. Stationary and oscillatory convection for d < 1.
d = 0.1 and a Ap = 0.1, b Ap = 0.3, c Ap = 0.5. dash-dotted
lines are the first and second mode of the first solution of p . The
second mode is never unstable. The solid line corresponds to the sec-
ond solution of p . Both solutions merge into one (solid line) at the

wavenumber where oscillatory convection begins. There is a critical
Marangoni number MaC for oscillatory convection. Above the criti-
cal wavenumber kC , oscillatory and then stationary convection remain
stable. The dotted and dashed lines correspond to the frequencies of
oscillation ωp
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Between these two k’s the growth rate decreases to p = 0
at the following critical k2

CO of oscillatory convection

k2
CO = ApCO

1 − d

d2 − d + 1
(50)

They (Eqs. 48 to 50) are only valid for ApC > 0 and
d < 1 or else for ApC < 0 and d > 1. Therefore, not
all the k range of oscillatory convection is unstable. The

maximum frequency of unstable convection occurs when k2

approaches to k2
CO , (near p = 0) where its value was

ωp = A2
p

d (1 − d)2

(
d2 − d + 1

)2

√
d2 + 1 (51)

However, theabsolutemaximumfrequencyofoscillationoccurs at

k2
ωpmax = Ap

4

(
3

(
d2 + 1

) + √
d4 + 34d2 + 1

(1 − d)
(
d2 + d + 1

)
)

(52)

(a) (b)

(c)

Fig. 4 Scaled p vs k. Stationary and oscillatory convection for d <

1. d = 0.5 and a Ap = 0.1, b Ap = 0.3, c Ap = 0.5. dash-dotted lines
are the first and second mode (not shown) of the first solution of p .
The second mode is never unstable. The solid line corresponds to the
second solution of p . Both solutions merge into one (solid line) at the

wavenumber where oscillatory convection begins. There is a critical
Marangoni number MaC for oscillatory convection. Above the criti-
cal wavenumber kC , oscillatory and then stationary convection remain
stable. The dotted and dashed lines correspond to the frequencies of
oscillation ωp
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which is always located after the critical, that is k2
CO <

k2
ωpmax . It is stable and is of no interest here. Moreover, it is

interesting that under particular conditions the growth rate
of unstable oscillatory convection may have a maximum at

k2
pmaxO = ApmaxO

2

1 − d

d2 − d + 1
(53)

In other words, when it exists, it occurs between k2
CO1 and

k2
CO . The condition p has to satisfy to have a maximum

is that k2
pmaxO > k2

CO1. This happens when d satisfies

1 > d > (3 − √
5)/2. Below this magnitude the growth

rate decreases monotonically with k and the the maximum
of p appears at k2

CO1, the first wavenumber for oscillatory
convection.

(a) (b)

(c)

Fig. 5 Scaled p vs k. Stationary and oscillatory convection for d < 1.
d = 0.9 and a Ap = 0.1, b Ap = 0.3, c Ap = 0.5. dash-dotted lines
are the first and second mode (not shown) of the first solution of p .
The second mode is never unstable. The solid line corresponds to the
second solution of p . Both solutions merge into one (solid line) at the

wavenumber where oscillatory convection begins. There is a critical
Marangoni number MaC for oscillatory convection. Above the criti-
cal wavenumber kC , oscillatory and then stationary convection remain
stable. The dotted and dashed lines correspond to the frequencies of
oscillation ωp
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From the results presented above it is concluded that
the stability is determined by two sets of conditions. The
first set is Ap > 0 and d > 1 (stationary convection)
or else, Ap > 0 and d < 1 (stationary convection and
oscillatory convection). The second set is Ap < 0 and
d < 1 (stationary convection) or else, Ap < 0 and d > 1
(stationary convection and oscillatory convection). In the
results presented below, the first set of conditions was used.

The linear problem was described by means of plots of
the growth rate p against the wavenumber. With them

the analytical results were clarified. In Figs. 2, 3, 4 and 5
the parameters d and Ap were varied to understand the
behaviour of the growth rate. In all the graphics of the
linear problem the first solution for p was plotted with
dashdotted lines, the second solution with solid lines, the
frequency of the first solution with dotted lines and the
frequency of the second solution with dashed lines. Figure 2
presents sample results for d > 1. In this case only
stationary convection is possible and a critical wave number
was found as in Eq. 44. As can be seen, k = 0 is also

(a) (b)

(c)

Fig. 6 Nonlinear mode: d > 1. Stationary convection. dw/χ = 0.1. a
d = 2, Ma = 1.8 (Ap ≈ 0.1), k = 0.187, t = 200, Sinuous. b d = 4,
Ma = 6.3 (Ap ≈ 0.3), k = 0.362, t = 200, Sinuous. c d = 6, Ma =

12.3 (Ap ≈ 0.5), k = 0.484, t = 200, Sinuous. Notice that they were
sinuous for both (A1(0) = A∗

1(0) = 0.05 and B1(0) = B∗
1 (0) = 0)

and (A1(0) = A∗
1(0) = 0 and B1(0) = B∗

1 (0) = 0.05)
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a critical wavenumber. The magnitudes of d were d = 2
(Fig. 2a), d = 4 (Fig. 2b) and d = 6 (Fig. 2c). In each
figure Ap varies as a) Ap = 0.1, b) Ap = 0.3, c) Ap =
0.5. Clearly, the growth rate increases with Ap which is
proportional to the Marangoni number. Besides, the increase
of d, from Fig. 2a to c, also has an important contribution to
increase the growth rate. An approximate wavenumber for
the maximum growth rate for stationary convection is given
in Eq. 45.

The linear results of d < 1 were presented in Figs. 3
to 5. Figure 3 corresponds to d = 0.1. The dotdashed line
corresponds to the first solution of p and the solid line
corresponds to the second solution. Due to the number of
details of the stability, the curves were presented in three
different graphs. The results for Ap = 0.1 were shown in
Fig. 3a, for Ap = 0.3 in Fig. 3b and for Ap = 0.5 in
Fig. 3c. The range of the wavenumber is limited to k < 0.7
in order to include the relevant results to k around 0.5. In

(a) (b)

(c)

Fig. 7 Nonlinear mode: d < 1. Stationary convection. dw/χ = 0.1, d = 0.1, Ma = 1.5 (Ap ≈ 0.1), k = 0.219. a A1(0) = A∗
1(0) = 0.05, t =

3000, Sinuous. b B1(0) = B∗
1 (0) = 0.05, t = 3000, Varicose. c B1(0) = B∗

1 (0) = 0.05, t = 7500, Sinuous
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Fig. 3a and b it is possible to observe the second stationary
mode of the first solution of p for k > 0.35 in Fig. 3a and
k > 0.6 in Fig. 3b. The fact that this mode is always stable
has as a consequence that no critical wavenumber exists
when d < 1. For this reason and for the sake of presentation,
this stable second stationary mode was not presented in the
following figures. In Fig. 3 the two solutions merge into one
curve at the point k2

CO1 where oscillatory convection starts.
Only Fig. 3a and b show the end of oscillatory convection at
k2
CO2, point after which the second stationary mode appears.

The critical wavenumber k2
CO of oscillatory convection is

located at the point where the solid curve touches the k

axis and p = 0. The increase of Ap increases the growth
rate of stationary convection. Moreover, it also increases
the magnitude of the p where the two solutions merge
to start oscillatory convection. Notice that the frequency of
oscillation increases too in the unstable range, to the left of
k2
CO .

The following figures present similar characteristics.
In Fig. 4 results were presented for d = 0.5. It is

(a) (b)

(c)

Fig. 8 Nonlinear mode: d < 1. Stationary convection. dw/χ = 0.1, d = 0.5, Ma = 4.7 (Ap ≈ 0.3), k = 0.25. a A1(0) = A∗
1(0) = 0.05, t =

300, Sinuous. b B1(0) = B∗
1 (0) = 0.05, t = 300, Varicose. c B1(0) = B∗

1 (0) = 0.05, t = 450, Sinuous
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interesting that the growth rate decreases in all the range
of k considered. However, the frequency of oscillatory
convection increases notably in the unstable k range of the
stability. The wave numbers where oscillatory convection
begins k2

CO1 (Eq. 48) and that corresponding to the critical
k2
CO (Eq. 50) decrease their magnitude. However, Ap

contributes to increase their magnitude as seen from Fig. 4a
to c.

In Fig. 5 the magnitude of d is increased to d = 0.9.
This reduces considerably the growth rate in all the range
of k. The magnitudes of k2

CO1 (Eq. 48) and k2
CO (Eq. 50)

are decreased further, in such a way that there is only a
very small wavenumber range of instability. It is interesting
that the unstable frequency has a decrease for this d in
comparison with the previous Figs. 3 and 4. In fact, the
maximum of unstable frequency Eq. 51, near p = 0 has
also a maximum with respect to d. That maximum was
found to correspond to

dmaxf req = 1

6

[(
4
√

113 + 36
) 1

3 −
(

4
√

113 − 36
) 1

3
]

(54)

which is approximately dmaxf req = 0.4023199. The results
of Fig. 4 were near to this dmaxf req and therefore had
an increase in unstable frequency. Those of Fig. 5 are
far from this dmaxf req and the frequency decreased even
below that of Fig. 3. In contrast, it was shown that the
maximum of the growth rate of oscillatory convection
decreases monotonically from d = 0 to d = 1 (where the
flow is already stable, see Eq. 42).

The subject of the next section is the nonlinear problem.
The interest is to find out which mode, the sinuous or the
varicose, will prevail in the instability.

Nonlinear Sinuous and Varicose Modes
of Instability

Here numerical analysis is made of the coupled nonlinear
Eqs. 34 and 35 under the same assumption of the previous
section, that is, the fluids and the atmospheres outside them
were the same but with different temperatures.

The analysis of the free surface deformations h and h1

in Eqs. 34 and 35 was made by means of a three-term
expansion using the first two normal modes. They are

h = 1 + A1(t)e
ikx + A2(t)e

2ikx + c.c. (55)

h1 = d + B1(t)e
ikx + B2(t)e

2ikx + c.c. (56)
where c.c. means complex conjugate. These expressions
were substituted in Eqs. 34 and 35 to obtain a set
of time nonlinear ordinary differential equations for the
coefficients. Substitution was made of α = μ = γ =

γT = K = 1, Bi1 = Bid with S = 1 and Bi = 0.1.
Now, assuming that an asterisk means complex conjugate,
the equations have the form:

dA1

dt
+ k4

(
1

3
A1 + A2

1A
∗
1 + 7A2A

∗
1

)

+ Mak2

10den2

[
−

(
A1 + B1 + 2A∗

1A2 + A2
1A

∗
1 − 2B∗

1 A2

+4B2A
∗
1 − A2

1B
∗
1 + 2A1B1A

∗
1

)

+ 1

10den

(
2A∗

1A2 + 4B2
1A∗

1 + 2B∗
1 A2 + 4A2

1A
∗
1

+8A1B1A
∗
1 + 2A∗

1B2 + 2B∗
1 B2

)

− 3

100den2

(
A∗

1A
2
1 + A2

1B
∗
1 + B2

1B∗
1 + A∗

1B
2
1

+2A∗
1B1A1 + 2A1B1B

∗
1

)] = 0 (57)

dA2

dt
+ k4

(
16

3
A2 + 2A2

1

)

+2Mak2

5den2

[
−

(
A2 + B2 + A2

1 + B1A1

)

+ 1

10den

(
B2

1 + 2B1A1 + A2
1

)]
= 0 (58)

dB1

dt
+ k4d

(
d2

3
B1 + B2

1B∗
1 + 7dB∗

1 B2

)
+ Mak2

5den2

[(
d2

2
(A1 + B1) − dB2A

∗
1 + 2dB∗

1 A2 + dB∗
1 B2

+B1A1B
∗
1 − 1

2
B2

1A∗
1 + 1

2
B2

1B∗
1

)

− d

5den

(
A2

1B
∗
1 + B2

1B∗
1 + 2A1B1B

∗
1

+d

2

(
B∗

1 A2 + A∗
1A2 + B2A

∗
1 + B∗

1 B2
))

+ 3d2

200den2

(
B2

1A∗
1 + A∗

1A
2
1 + B2

1B∗
1

+2A1B1A
∗
1 + A2

1B
∗
1 + 2A1B1B

∗
1
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= 0 (59)

dB2

dt
+ 2k4d2

(
8

3
dB2 + B2

1

)

+2dMak2

5den2

[
B2

1 + B1A1 + dA2 + dB2

− d

den

(
1

10
A2

1 + 1

10
B2

1 + 1

5
A1B1

)]
= 0 (60)

The complex conjugate equations also form part of the
complete set of eight coupled nonlinear ordinary differential
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equations. They were solved using the package Maple.
For initial value problems it uses a Runge-Kutta Fehlberg
method (rkf45) that produces a fifth order accurate solution.
The numerical solution was done assuming two kinds of
initial perturbations. First, the perturbations were applied at
the free surface of fluid 2 and A1(0) = A∗

1(0) are given with
the other initial amplitudes zero. Second, the perturbations
were applied at the free surface of fluid 1 and B1(0) =
B∗

1 (0) were given with the other initial amplitudes zero.
Here, A∗

1(0) and B∗
1 (0) are the initial values of the complex

conjugate amplitudes.

Sample figures were selected to present the nonlinear
results. The parameters χ and dw appear in the denominator
den in one parameter dw/χ . It is important to point out
that increasing this ratio decreases the magnitude of the
growth rate by diminishing the destabilizing effect of the
Marangoni number.

This ratio dw/χ was fixed in what follows because
the principal goal was to approximate the parameter Ap

to the magnitudes used in the linear problem. This was
possible by fixing the required d and adjusting with
the Marangoni number. The unstable wavenumber for

(a) (b)

(c)

Fig. 9 Nonlinear mode: d < 1. Stationary convection. dw/χ = 0.1, d = 0.9, Ma = 8.1 (Ap ≈ 0.5), k = 0.12. a A1(0) = A∗
1(0) = 0.05, t =

400, Sinuous. b B1(0) = B∗
1 (0) = 0.05, t = 400, Varicose. c B1(0) = B∗

1 (0) = 0.05, t = 500, Sinuous
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stationary convection used to understand which mode
will prevail, sinuous or varicose, in the instability was
selected as one close to that corresponding to the maximum
growth rate. As discussed above, the growth rate of
unstable oscillatory convection not always has a maximum.
Therefore, the selected wavenumber was obtained applying

the following calculation
√(

k2
CO1 + k2

CO

)
/2.

Computations were done for Ap = 0.1, 0.3 and 0.5
for each of the selected magnitudes of d. Notice that
not all of those results were presented. This allowed

us to have general conclusions related with the sample
solutions presented in the next figures. The discussion of
the nonlinear problem starts with d > 1. From the linear
results it is known that only stationary convection can occur
in this case. Figure 6 reviews the results of this case for
d = 2 (Fig. 6a), d = 4 (Fig. 6b) and d = 6 (Fig. 6c). Each
figure shows results for a selected Ap with a corresponding
Ma. The wavenumbers were near to the maximum growth
rate. It is found that, in all cases, the nonlinear mode of
the perturbations is sinuous under the two initial conditions

(a) (b)

(c)

Fig. 10 Nonlinear mode: d < 1. Oscillatory convection. dw/χ = 0.1, d = 0.1, Ma = 1.5 (Ap ≈ 0.1), k = 0.30, ωp = 0.00075. a
A1(0) = A∗

1(0) = 0.01, t = 1500, Sinuous. b B1(0) = B∗
1 (0) = 0.01, t = 1500, Varicose. c B1(0) = B∗

1 (0) = 0.01, t = 4500, Sinuous
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considered. They are A1(0) = A∗
1(0) = 0.05 (perturbations

at the free surface of fluid 2) and B1(0) = B∗
1 (0) = 0.05

(perturbations at the free surface of fluid 1).
The results for of Fig. 6 are in contrast with those when

d < 1. The solutions in this case were presented considering
the magnitude of Ap in each figure. Figure 7 shows curves
for stationary convection when d = 0.1 and Ap ≈ 0.1. It is
found that the nonlinear mode is always sinuous (Fig. 7a, t
= 3000) when perturbations are applied to fluid 2. However,
if the perturbations are applied to fluid 1 (Fig. 7b, t = 3000),

it is possible to change the mode of instability to a varicose
one. Nevertheless, this mode is able to change around time t
= 7500 (Fig. 7c) into the sinuous mode. The sinuous mode,
which seems to be the natural one for convection, remains
for the full time of the calculation.

A similar behavior of stationary convection was found
in Fig. 8 for d = 0.5 and Ap ≈ 0.3 with Ma = 4.7.
When the perturbation is applied to fluid 2 (Fig. 8a, t =
300) the nonlinear mode was sinuous all the time. However,
application of the perturbation at fluid 1 led to a varicose

(a) (b)

(c)

Fig. 11 Nonlinear mode: d < 1. Oscillatory convection. dw/χ = 0.1, d = 0.5, Ma = 4.7 (Ap ≈ 0.3), k = 0.38, ωp = 0.012. a
A1(0) = A∗

1(0) = 0.05, t = 130, Sinuous. b B1(0) = B∗
1 (0) = 0.05, t = 130, Varicose. c B1(0) = B∗

1 (0) = 0.05, t = 170, Sinuous
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mode (Fig. 8b, t = 300) which then (Fig. 8c) changed into
a sinuous one around t = 450. After that time the mode was
sinuous always.

In Fig. 9 d is increased further to d = 0.9.Ap ≈ 0.5
and Ma = 4.7. The behavior of stationary convection is in
agreement with previous figures. The perturbations at fluid
2 (Fig. 9a, t = 400) led to a sinuous mode of instability.
However, the perturbations at fluid 1 led first (Fig. 9b, t =
400) to a varicose mode which then changed (Fig. 9c, t =
500) into a sinuous one which prevailed during the whole
time.

The results of oscillatory convection when d < 1
are presented in the next figures. Notice in Fig. 10 that
the magnitude of the perturbations A1(0) = A∗

1(0) and
B1(0) = B∗

1 (0) is smaller than those of the other figures.
The magnitudes of the parameters used are d = 0.1 and
Ma = 1.5 which gives approximately Ap ≈ 0.1. The
wavenumber is k = 0.30 and the corresponding frequency
of oscillation is ωp = 0.00075, which is very small. It
is found (Fig. 10a, t = 1500) that when perturbations are
applied at fluid 2, the oscillations first start as a sinuous
mode and then change into the varicose mode to again

(a) (b)

(c)

Fig. 12 Nonlinear mode: d < 1. Oscillatory convection. dw/χ = 0.1, d = 0.9, Ma = 8.1 (Ap ≈ 0.5), k = 0.19, ωp = 0.0017. a
A1(0) = A∗

1(0) = 0.05, t = 170, Sinuous. b B1(0) = B∗
1 (0) = 0.05, t = 170, Varicose. c B1(0) = B∗

1 (0) = 0.05, t = 200, Sinuous
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become a sinuous one. If the perturbations are applied at
fluid 1 (Fig. 10b, t = 1500), the first mode to appear is
the varicose one. Then it changes (Fig. 10c, t = 4500) into
the sinuous mode and the oscillations continue from this
point. It is interesting to point out that the proper and natural
oscillation in fact starts around t = 4500. This means that the
system first shows a varicose mode and then tries to adapt
itself to the proper mode of oscillation. After that time the
system starts the normal period of oscillation corresponding
to the parameters selected in this Fig. 10.

Oscillatory convection was presented in Fig. 11 for
different parameters. There, d = 0.5 and Ma = 4.7 were
used to give Ap ≈ 0.3. The wavenumber selected is k =
0.38 with a frequency of oscillation ωp = 0.012. When the
perturbations were applied at fluid 2 (Fig. 11a, t = 130) the
starting mode was sinuous. Then it changed into a varicose
one and so forth. However, when the fluid 1 was perturbed
(Fig. 11b, t = 130) the oscillations started with a varicose
mode. Then the system required some time to change into a
sinuous mode (Fig. 11c, t = 170). It was found that around
this adaptation time the oscillations started properly with a
period 2π/ωp.

In Fig. 12 a similar behavior was found to that of the
previous figures of oscillatory convection. The data were
d = 0.9 and Ma = 8.1 corresponding to Ap ≈ 0.5. In this
case k = 0.19 and ωp = 0.0017. When perturbations are
applied to fluid 2 (Fig. 12a, t = 170) the oscillations start
as sinusoidal. If the perturbations are applied to fluid 1 the
oscillations start as varicose (Fig. 12b, t = 170) and then
change into a sinuous mode after some time (Fig. 12c, t =
200). From this time on the oscillations proceed properly
with the corresponding period of oscillation.

Conclusions

The thermocapillary instability of two fluid layers thermally
coupled through a solid interlayer has been investigated in
the linear and nonlinear problems. The two liquid layers are
supposed to be in the absence of gravity. This theoretical
assumption was motivated by the possibility of an outer
space experiment in a manned artificial satellite. In the
linear case, it was found a quadratic equation for the growth
rate. This equation had two solutions for the growth rate.
The solution with largest growth rate is called the first
solution. Both solutions change into an oscillatory mode
after a particular wavenumber. This oscillatory wavenumber
region separated two regions of the first solution which are
called the first and second modes of instability. It was found
that the second mode of the first solution is always stable.
Therefore, it was neglected in all the discussion of the
stability. The wavenumber range of oscillatory convection
had a stable region which is very large for some parameters

of the problem. This stable section was also neglected from
the discussion.

A number of exact analytical solutions were obtained
to understand in a better way the general behavior of the
linear stability. Besides, some approximate solutions were
obtained for the maximum growth rate of instability. These
approximate solutions work correctly in a limited range
of the parameters. They not necessarily work correctly
for negative Ap. From the linear analytical results and
their numerical confirmation, it was concluded that two
sets of instability parameters were possible. The two sets
are equivalent and are related to a change in sign of the
Marangoni number (Ap) and to a change in magnitude of d

from smaller than one to larger than one. Here, the set Ap >

0 and d > 1 and Ap > 0 and d < 1 was selected for the
discussion. It was shown analytically and numerically that
when Ap > 0 and d > 1, only stationary convection was
possible. Moreover, only in this case stationary convection
had a critical wavenumber different from zero. When
Ap > 0 and d < 1, it was possible to have both
stationary and oscillatory convection in different ranges of
the wavenumber. It was found that stationary convection
had no finite critical wavenumber. The reason was that
the first mode of the first solution of the growth rate
for stationary convection changed into one of oscillatory
convection for a finite growth rate. Moreover, the second
mode of the first solution of the growth rate was always
negative an never touched the wavenumber axis. However,
an analytical solution for the critical wavenumber for
oscillatory convection was obtained and used to calculate a
maximum frequency of unstable oscillatory convection.

A three-term expansion using the first two normal
modes of the free surfaces was used in the two nonlinear
evolution equations to find out which relative mode of
surface deformations was preferred by the system. When
Ap > 0 and d > 1 only stationary convection occurs and
the nonlinear mode of instability was always sinuous, for
both perturbations applied from fluid 2 and from fluid 1.
When Ap > 0 and d < 1 both stationary and oscillatory
convection were possible. In stationary convection it was
shown that when the perturbations are applied to fluid 2
the nonlinear mode is sinuous. When they are applied to
fluid 1, the first mode is varicose. Then it changes with
time into a sinuous one which remains as the preferred
mode. In oscillatory convection it was found that when
the perturbations were applied to fluid 2 the first nonlinear
mode to appear was the sinuous mode. Then the oscillations
proceeded normally. When the perturbations were applied to
fluid 1 the oscillations started with a varicose mode. Then,
they changed with time into a sinuous mode. It is interesting
that the proper oscillations of the system started to occur just
after the oscillations became sinuous. That is, it seems that
the period of oscillation started at that time. The conclusion
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is that when perturbations are applied form fluid 1, the
system with a varicose mode needs a time to adapt itself to
the conditions imposed by the parameters and then it starts
the proper oscillations as sinuous. From that moment, in a
period 2π/ωp the system will have again a varicose mode,
and so forth.

A rich variety of phenomena occur when the fluid layers
have a thermal coupling by means of a wall with finite
thickness and thermal conductivity. Here, some of the
parameters have been fixed to make the system more easier
to understand. However, a number of interesting phenomena
have been found as a result of the two layers interaction,
even when the two fluids are the same and the atmospheres
are the same but with different temperatures. As a next step,
it is of interest to include the effect of gravity. This problem
is already in preparation.
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