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• In the supercooled regime, a constant or a temperature dependent potential energy hindering the cooperative rearranging regions,
appear depending on the region under study.

• The constancy of the energy term in the Adam-Gibbs equation depends on the temperature region it is studied, and on the assumptions
made upon the calorimetric properties of the glassformer.
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a b s t r a c t

The Adam-Gibbs equation has been used for more than five decades, and still a question
remains unanswered on the temperature dependence of the chemical potential it includes.
Nowadays, it is a well-known fact that in fragile glass formers, actually the behavior of
the system depends on the temperature region it is being studied. Transport coefficients
change due to the appearance of heterogeneity in the liquid as it is supercooled. Using the
different forms for the logarithmic shift factor and the form of the configurational entropy,
we evaluate this temperature dependence and present a discussion on our results.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The explanation of the phenomenology of the glass transition remains still nowadays an open issue in thermal physics,
although it has been widely studied for many decades. Nevertheless, at present we do not have a totally accepted theory to
explain its relaxational and calorimetric behaviors under different circumstances. One of themain characteristics of a liquid,
when it is being supercooled, is that its viscosity grows strikingly fast as the temperature approaches the glass transition
temperature Tg . In fact, a well known and generally accepted definition for the glass transition temperature, for the kind of
glassformers herein considered, is the value at which the shear viscosity reaches 1013 poise.

As a supercooled liquid approaches the glass transition temperature Tg , it becomes largely heterogeneous. Its flow
becomes highly sluggish and the diffusion of a given tracer is enhanced. The viscosity of the liquid presents different
behaviors as the temperature is lowered. The existence of a crossover temperature Tc , between the glass transition and
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melting temperatures has been proven, both from experimental and theoretical points of view [1–29]. This temperature lies
within the interval range (1.15Tg , 1.28Tg ). It is important to point out that, even the same notation is used inMode Coupling
Theory [30–33], it does not represent its theoretical critical temperature.

As far as the calorimetry of supercooled liquid, in 1948, Kauzmann [34] presents a first step towards a statistical physics
model. Ten years later, Gibbs and diMarzio [35] present theirmodel, where they consider the glass transition as an Ehrenfest
second order phase transition. This last model prevails up to our days as a still good approximation even though the glass
transition is not a phase transition [36]. They present calorimetric results on the configurational entropy and the key to
evaluate heat capacities.

In 1965, Adam andGibbs (AG) found a relationship between the temperature dependence of the viscosity of a supercooled
liquid and its calorimetric properties through the statistical physics point of view of what they define as a cooperatively
rearranging region (CRR) [37]. They proposed that the relaxation times or the viscosities of the system, in the glass transition
vicinity, were related with the probabilities of cooperative rearrangements of molecules in a CRR, defined as a subsystem of
the liquid, which upon a sufficient amount of energy, it may rearrange itself into another configuration. At these low among
a great number of molecules and configurational degrees of freedom persist. In this sense, the thermodynamic description
of the glassformer may be understood as configurational.

One of the main physical properties used to study the relaxation and transport processes in supercooled liquids is the
Logarithmic Shift Factor defined as

log aT = log
η(T )
η(Ts)

= log
τ (T )
τ (Ts)

(1)

where τ and η represent, respectively, the relaxation time of a given relaxation process and the viscosity of the supercooled
liquid, and Ts is a reference temperature.

Glassformers may be considered, according to Angell’s definition [38], as strong and fragile. Our study is focussed in the
fragile glassformers.

In this kind of supercooled liquids, log aT , presented in Eq. (1),may be given by twowidely used, physically andmathemat-
ically equivalent, phenomenological equations [39–41]. On one hand, the Vogel–Tammann–Fulcher (VFT ) equation [42–44].

log aT = A −
B

T − T0
(2)

where A and B are temperature independent parameters and T0 is defined as the temperature where the configurational
entropy vanishes, the isoentropic temperature.

The other phenomenological relation is the Williams–Landel–Ferry (WLF ) equation [45],

log aT = −
C1(T − Ts)
C2 + T − Ts

(3)

In their original work,WLF chose the adequate reference temperature Ts for several glassformers, such that, the constants
C1 and C2 had the same value for all the systems under study. Nowadays, the WLF is quite successful, but the values of the
constants may be different for each supercooled liquid.

The AG work remains up to our days as a good model to begin with the study of the glass transition and glassy systems.
Nonetheless, several questions remain still open on the evaluation of the configurational entropy, the behavior of the energy
barrier, and the non-Arrhenius behavior of transport properties.

Several issues have been presented in the last few years on different aspects of the AGmodel. In their work, based on free
volume theories, Adam and Gibbs [37] consider that the energy needed to attain a new configuration may be expressed in
terms of the size, or number of molecules, of a rearranging of the size.

On one hand, instead, the Random First Order Transition Theory (RFOT ) [46–49] considers its dependence namely
depends on the length scale of a given region, that is, on the correlation length among a great number of unrelated stable
configurations. In both cases there might be a connection between the size or length of the region with the heterogeneity as
it will be discussed in the last section.

As far as the free volume is concerned, in the shoving model [50–52], sudden molecular rearrangements take place, and
to attain them, molecules must shove aside their surrounding neighbors.

In a very complete work, Dudowicz, Freed and Douglas [53] present the strengths and weaknesses of both the original
Gibbs di Marzio theory and the Adam Gibbs model. Although new experimental and simulation techniques give results that
agree with the AGmodel, in the cases when it breaks down, the Generalized Entropy Theory [54–56] presents a new way to
evaluate the configurational entropy and studies the variations in fragility for different glass formers.

An interesting application of all these ideas is the one performed by Schweizer and Saltzman in the case of glassy
transitions in colloidal suspensions using the Ideal Mode Coupling Theory [57–60]

It is very important to notice that in all the new insights to deal with the study of the glass transition, specially in fragile
glassformers, we still find the use of the Stickel’s derivativemethod [6–10] and the fragility index introduced by Böhmer and
Angell [61] in recent works of Sokolov, Novikov and co workers [62,63] to prove the feasibility of phenomenological results
for super Arrhenius forms for the viscosity or relaxation times.
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More than fifteen years ago, C. A. Angell [64] summarized what he considered ten key questions, that remain open, in the
study of the behavior of glassformers in the neighborhood of the glass transition. In this work, we try to present an answer
to the second one concerning the feasibility of the constancy of 2.303∆µs∗c

kB
in the Adam-Gibbs equation, namely

‘‘Why do structural glasses exhibit such a range of fragilities?’’
where he mentions that ‘‘the constancy of this term is hardly to be expected’’. This quote makes reference to the fact that a
constancy of the chemical potential is hardly to be accepted. A non temperature dependent chemical potential in the AG
equation is still an open issue [65–67].

The purpose of this work is to find the temperature dependence of the chemical potential introduced by Adam and Gibbs,
in the complete range of temperatures of the glassformers between Tg and Tm. First of all, in Section 2, we present a brief
summary of the AG theory. Then, in Section 3, we present our results to express the LSF in the two different temperature
regions that will be used to express the AG equation. In Section 4 we present analytical expressions for ∆Cp which enable
us to evaluate the configurational entropy. Finally, in Section 5, we present our results on the dependence of the chemical
potential with temperature, depending on the region we are working on. Finally,we present some brief conclusions.

2. The Adam-Gibbs theory

Adam and Gibbs proposed a statistical physics model in order to relate log aT with the calorimetric properties of different
glassformers [37]. Since the supercooled liquid preserves only its configurational degree of freedom, all the thermodynamic
properties they derive are only configurational.

The core of their theory lies in the fact that the viscosity or the relaxation times in kinetic experiments in supercooled
liquids are determined in terms of the probability of rearrangements in what they define as ‘‘a cooperatively rearranging
region’’, i.e., a subsystem of the supercooled liquid, that, given a large enough fluctuation in energy, may rearrange itself
into another configuration. The probability of a given rearrangement depends on the number of molecules z considered
therein. They propose the partition function of the isothermal–isobaric ensemble to describe the probability of the relevant
fluctuations as,

∆c(z, P, T ) =

∑
E,V

w(z, E, V ) exp(−E/kBT ) exp(−PV/kBT ) (4)

where w is the degeneracy of the energy level E and volume V of the subsystem, and P and T represent the pressure and
temperature, respectively, that allow a transition. We may evaluate the configurational Gibbs free energy as,

Gc = zµc = −kBT ln1c (5)

in terms of the configurational chemical potential ∆µ that may be interpreted as the potential free energy that inhibits a
rearrangement from taking place.

Thus, the probability of a rearrangement,W (T ), is given by

W (T ) = A exp(−z∗∆µ/kBT ) (6)

In Eq. (6), kB is the Boltzmann’s constant and A represents the frequency factor which is independent on T and z. There is
a critical lower value of the size of the CRR, z∗, for which the transition probability exists, and it is characterized by a critical
configurational entropy s∗c

z∗
=

NAs∗c
Sc

(7)

NA is Avogadro number and represents the molar configurational entropy of the system. Thus, the average transition
probability may be finally written as,

W (T ) = A exp
(

−
∆µs∗c
kBTSc

)
(8)

where, again, A is temperature independent factor.
Since the relaxation time or the viscosity are related reciprocally with the transition probability, Eq. (8), one may write

log aT , as,

log aT = log
τ (T )
τ (Ts)

= log
η(T )
η(Ts)

∝
1

W (T )
(9)

with, Ts is a reference temperature. Therefore, using Eqs. (6)–(8), Eq. (9) may be written as,

− log aT = 2.303
(

∆µs∗c
kB

)[
1

TsSc(Ts)
−

1
TSc(T )

]
(10)

In Eq. (10), the configurational chemical potential∆µ is considered by AG as the potential free energy needed to attain the
cooperative rearrangement per molecule, and it is considered as temperature independent. In their paper [37] they suggest
that a detailed study would be published, but up to our knowledge, this publication was never accomplished. Depending on
the interest of using Eq. (10), one may evaluate either the calorimetric or the relaxation properties.
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Fig. 1. Plot of the LSF vs. T for PVAc for temperatures from Tg to Tm .

Table 1
Values of m and b, given in Eq. (11), for the studied liquids for temperatures
above Tc .

LIQUID m b

PIB 13.54 −13.54
PVAc 14.15 −18.54
PS 13.88 −14.54
PP 13.75 −17.52
OTP 13.14 −8.83
Salol 13.27 −15.48

3. The logarithmic shift factor

For almost three decades, highly precise experimental works have proven that neither log aT may not be expressed as a
VFT in the range of temperatures between Tg and Tm, nor, for temperatures below Tc , either the VFT or the WLF equations
describe the temperature dependence of the viscosity on temperature [1–10,24–28]. Some authors have proposed that
two VFT equations might be used to describe the behavior in the two intervals around Tc , but a very important issue to
be considered is that the physical meaning of T0 in the VFT equation, Eq. (2), corresponds to the isoentropic Kauzmann
temperature TK , thus it may not be considered as a fitting parameter [68–72].

We have worked with experimental values for fragile glassformers reported for salol and OTP (o-terphenyl) [6,7],
and for the polymers PIB (polyisobutylene) [73–75], PVAc (polyvinyl acetate) [76], PS (polystyrene) [75,77–79], and PP
(polypropylene) [80]. In Fig. 1, we show log aT for supercooled PVAc in the temperature range from Tg to Tm. It is
straightforward to notice that the logarithm changes its magnitude order in four, in the region between Tc and Tm that
comprises 65 K, and how the order doubles to eight, from Tg and Tc , where 61 K lie.

This fact implies that the dependence of log aT with temperature must be given by two different empirical forms, one for
each temperature region. In previous works [81–84] we have found two expressions to represent the experimental values
of log aT for both intervals. In the case of temperatures above Tc , theWLF equation is still valid and it may be rewritten as,

log aT = m
(
Tg
T

)2

+ b (11)

For temperatures below Tc , we have seen that Eq. (11) is not valid, and the experimental values may be expressed in
terms of the form,

log aT = D(TA − T )2 + E (12)

As it may be appreciated, both Eqs. (11) and (12) are valid for many fragile glassformers [82]. In Tables 1 and 2, we
show the parameters m, b, D, TA and E of both equations for several fragile glassformers. We may see that the values of the
parameters of both tables are given within the framework of the universality of log aT in both regions [84]. As an example,
in Figs. 2 and 3 we present both relations for PVAc.
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Fig. 2. Plot of the viscosity η vs. T for PDE. The dotted line corresponds to the VFT fit above Tc Eq. (2). The solid line represents the viscosity below this
temperature, according to Eq. (12) [74].

Fig. 3. Plot of the LSF vs.
(

Tg
T

)2
given by Eq. (11) with error bars of 5% for PVAc (■) for temperatures above Tc .

Table 2
Values of D, TA and E, given in Eq. (12), for the studied liquids for tempera-
tures below Tc .

LIQUID D TA (K) E

PIB .0023 245.21 3.79
PVAc .0023 365.69 7.86
PS .0023 432.04 8.06
PP .0023 317 8.17
OTP .0023 319.46 10.30
Salol .0023 291.64 8.48

4. The heat capacity and the configurational entropy

One of the main problems in thermodynamics is the evaluation of the entropy. Since in the case of fragile glassformers
many experiments in calorimetry are continuously being performed, it is not difficult to find the data in literature.

We shall now calculate the configurational entropy that appears in the AG equation (10). In the first place, we need to
have an analytical expression for the difference of the specific heats, ∆Cp. This difference is defined [85] by,

∆Cp = C liq
p − C crys

p (13)
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Table 3
Values of α and β , given in Eq. (14), for the studied liquids for temperatures
above Tc .

LIQUID α β

PIB 44.06 −.10
PVAc 103.61 −.21
PS 76.05 −.12
PP 69.76 −.16
OTP 27.60 −.06
Salol 183.73 −.29

Table 4
Values of α

′

and β
′

, given in Eq. (14), for the studied liquids for temperatures
below Tc .

LIQUID α′ β
′

PIB 34.65 −.06
PVAC 107.39 −.22
PS 96.62 −.17
PP 48.78 −.09
OTP 26.07 −.05
Salol 186.75 −.31

where C liq
p and C crys

p are respectively the specific heats of the supercooled liquid and the crystal phase. It is important to point
out that the behavior of this difference is given, mainly, by the change of C liq

p as temperature diminishes.
Using available data for both the specific heat of polymers, through from one of the most important databases, the ATHAS

(Advanced Thermal Analysis System) [86], and corresponding data for fragile supercooled liquids [87–89], wemay easily find
that ∆Cp, may be expressed in terms of a linear equation, with different coefficients, in both T < Tc and T > Tc temperature
regions, that is,

∆Cp = α − β(T − Tg ) (14)

where the values of the coefficients α and β are given in Tables 3 and 4, respectively, for both regions.
Finally, we may evaluate the mathematical form for the configurational entropy, Sc(T ), through its definition.

Sc(T ) = ∆Sm +

∫ T

Tm

∆Cp

T ′
dT ′ (15)

with ∆Sm the entropy in the melting point.
Using Eq. (14) for the forms for ∆Cp for both temperature regions, and solving the integral given in Eq. (15),

Sc(T ) = ∆Sm −

∫ T∗

T

α − β(T ′
− Tg )

T ′
dT ′

=

= ∆Sm − (α + βTg ) ln
(
T ∗

T

)
+ β(T ∗

− T )
(16)

where T ∗ is the reference temperature to carry on the integration and has different values depending on the integration
region, i.e., for T > Tc , T ∗

= Tm, and if T < Tc , T ∗
= Tc .

In Fig. 4, we may see the configurational entropy, Eq. (16), for PIB in the whole temperature region. The behavior of Sc , as
temperature drops, is as we expected. The number of the CRR accessible configurations reduces as temperature decreases
from Tm to Tc with a rate that is almost half of the corresponding one between Tc and Tg . This means that, as temperature
diminishes towards the glass transition temperature, the possibilities of reaching a rearrangement fall with a larger rate
towards the isoentropic temperature where the configurational entropy vanishes.

5. Results

In 1965, Adam and Gibbs made two important assumptions in order to obtain the value of the term 2.303∆µs∗c
kB

in their
equation, namely, Eq. (10).

On one hand, they calculate the configurational entropy, Sc(T ), considering that the difference of the specific heats, ∆Cp,
Eq. (14), is constant. On the other hand, they propose that log aT for their glassformers obeys the WLF equation, namely,
Eq. (3).

Using these two last facts they obtain 2.303∆µs∗c
kB

in terms of one of the WLF constants. Thus, they assess that the free
energy barrier that needs to be surmounted in order to attain an arrangement within a CRR is temperature independent.



520 M. Duque et al. / Physica A 496 (2018) 514–524

Fig. 4. Plot of the LSF vs. (Ta − T )2 given by Eq. (12) with error bars of 5% for PVAc (■) for temperatures below Tc .

Table 5
The constant values of 2.303 · ∆µ · s∗c

kB
, given in Eq. (18), for the studied super-

cooled liquids for temperatures above Tc .

LIQUID 2.303 · ∆µ · s∗c
kB

(J/mol)

PIB 107,223.12
PVAC 58,462.81
PS 78,810.05
PP 76,320.34
OTP 9,607.80
Salol 10,238.78

However, they left open the possibility that there might actually exists a dependence on temperature of the configurational
chemical potential ∆µ on Eq. (3) [37]

In this work, as we have presented above, neither the form for the logarithmic shift factor is the same in the temperature
regions we are working with, nor ∆Cp is constant.

Thus, we analyze the temperature dependence of the Adam-Gibbs parameter in our two temperature ranges. Using
Eq. (10), we may find that,

2.303
∆µs∗c
kB

=
log aT[

1
TsSc (Tg )

−
1

TSc (T )

] (17)

In the case of temperatures that lie above Tc , using the expression for log aT given by Eq. (11), we get,

2.303
∆µs∗c
kB

=

m
(

Tg
T

)2
+ b

1
TcSc (Tc )

−
1

TSc (T )

(18)

where Sc is given by Eq. (16), for temperatures in the same interval. If we plot 2.303∆µs∗c
kB

as a function of temperature,
surprisingly, its value remains constant. The values of this constant energy are given in Table 5.

In the case of temperatures below Tc , Tg > T > Tc , we must take the fit proposed in Eq. (12) for the LSF and the
configurational entropy, Eq. (16), for this case. Using these results, we may write,

2.303
∆µs∗c
kB

=
D(TA − T )2 + E

1
TcSc (Tc )

−
1

TSc (T )

(19)

In Fig. 5 we present the plot of both the energies displayed in Eqs. (18) and (19) in the complete temperature region above
Tg as a function of the variable T − Tg . This figure enables us to understand the core of our result in the whole temperature
region.
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Table 6
The linear form of 2.303 · ∆µ · s∗c

kB
, given in Eq. (19), for the studied supercooled

liquids for temperatures below Tc .

LIQUID 2.303 · ∆µ · s∗c
kB

(J/mol)

PIB −411.19 · T + 153,135
PVAC −236.09 · T + 125,935
PS −534.87 · T + 109,537
PP −294.77 · T + 98,018
OTP −2,085.5 · T + 100,333
Salol −701.22 · T + 42,896

Fig. 5. Plot of the Sconf vs. T for PIB (♦) for temperatures from Tg to Tm .

In the case of temperatures above Tc , we may see how the part of the corresponding term 2.303∆µs∗c
kB

as a function of
temperature, remains constant for all our glassformers. This, of course, reproduces the original result [37], in the sense that
the necessary energy needed to induce a rearrangementwithin a CRR is temperature independent. The values of this constant
energy are given in Table 5.

Nonetheless, below Tc , this energy is clearly non constant and strongly temperature dependent and may be expressed in
function of the linear form, namely,

2.303
∆µs∗c
kB

= LT + G (20)

The values of the coefficients of Eq. (20) are given in Table 6.
It is important to point out that the dependence of 2.303∆µs∗c

kB
with temperature, for T < Tc , does not depend on the

mathematical representation of the graph that contains the experimental data of log aT , Fig. 1, in particular, whether it is,
either or not, a VFT fit, namely, Eq. (11). In Fig. 6, the steepness of the curve representing log aT in the interval comprised
between Tg and Tc is visibly larger than the one for temperatures above Tc .

This last result takes us to a long time debatewhether this termmay be considered constant or not. This question has been
open since Adam and Gibbs. Themselves, offered a future demonstration that 2.303∆µs∗c

kB
was temperature independent [37],

which was never published. This constancy has been debated for almost fifty years [90–114]. Several authors have insisted
in the fact of the necessary dependence on temperature of this energy [69,115].

6. Discussion

As a supercooled glassforming liquid is cooled towards the glass transition temperature Tg , its dynamics becomes
increasingly heterogeneous presenting magnified diffusion mechanisms. As it has been extensively revised in the literature
[81–83,115–140], the Stokes–Einstein (SE) relationship between the diffusion coefficient D of a spherical tracer of radius a
tracer in a fluid whose viscosity is η, namely,

D =
kBT
6πaη

(21)
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Fig. 6. Plot of 2.303∆µs∗c
kB

vs.
(
T − Tg

)
for temperatures from Tg to Tm . The four glassformers that are presented are PIB (■), PVAc (•), PS (▲) and PP (▼).

breaks down for temperatures below Tc and the diffusion process is enhanced. In this region the diffusion coefficient may
be expressed in terms of the relation

D ∼ η−ξ 0 < ξ < 1 (22)

The temperature dependence of 2.303∆µs∗c
kB

gives us a clue to understand the decoupling between the viscosity and the
diffusion coefficient below Tc . As the supercooled liquid enhances it sluggishness, on one hand, the CRR need more energy
to be able to change towards a given configuration. On the other hand, the viscous regime becomes more heterogeneous.
This idea may be modeled as a ‘‘bottlenecking’’ [119] due to thermally activated excitations that permit rearrangements
of groups of CRR. These thermal fluctuations appear due to the difference of the potential energy, mainly, the temperature
dependent configurational chemical potential, which increases as temperature is lowered. Thus, the tracer takes advantage
of this sluggishness and enhances its diffusion within the glassformer [81,82].

7. Conclusions

As it has been discussed, for more than five decades, the AG equation has been used for different types of materials
including fragile glass forming liquids and polymers.

The Adam Gibbs equation relates three terms as we have discussed throughout this work, the logarithmic shift factor,
the configurational entropy and the energy needed to surmount a given configuration of a cooperatively rearranging region.
Nowadays, several issues remain open in the region below the temperature Tc .

We have developed this work in a trendline towards obtaining a result that may share some light on the prediction about
the temperature dependence of the configurational chemical potential in this region, since this parameter in the AG equation
cannot be determined by a theory or an experiment. As a first step, we have used earlier results on the form of log aT . Then,
we have calculated the configurational entropy using experimental calorimetric measurements. Finally, we have obtained
the temperature dependence of 2.303∆µs∗c

kB
, as it has been proposed by several authors.

The importance of this work relies on the possibility of interconnecting previous results on the Stokes–Einstein
breakdown [81–84] and the thermodynamic cause of the thermal fluctuations that provoke this decoupling between both
transport coefficients for supercooled glassformers in the region below Tc .
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