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Theory for Strained Graphene Beyond the Cauchy–Born
Rule
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The low-energy electronic properties of strained graphene are usually
obtained by transforming the bond vectors according to the Cauchy–Born
rule. In this work, we derive a new effective Dirac Hamiltonian by assuming
a more general transformation rule for the bond vectors under uniform
strain, which takes into account the strain-induced relative displacement
between the two sublattices of graphene. Our analytical results show that the
consideration of such relative displacement yields a qualitatively different
Fermi velocity with respect to previous reports. Furthermore, from the
derived Hamiltonian, we analyze effects of this relative displacement on the
local density of states and the optical conductivity, as well as the implications
on the scanning tunneling spectroscopy, including external magnetic field,
and optical transmittance experiments of strained graphene.
When a material is subjected to deformation, the interatomic
distances change, which modulates the interactions among
neighbor atoms and, as a consequence, its physical properties
could be substantially modified. This idea is the base of the so-
called strain engineering that research how to manipulate, in a
controlledmanner, the physical properties of materials bymeans
of appropriate strain patterns. With the arrival of graphene and
the new families of two-dimensional crystals, the implementa-
tion of such idea has been triggered due to the high stretchability
of these materials.[1–3]

In order to model the strain-induced effects, one needs some
way of correlating macroscopic deformations (characterized by
the strain tensor �ϵ) with microscopic atomic displacements.
Typically in works focused on the electronic and optical
properties of strained graphene,[4–11] this bridge is made by
assuming that the undeformed nearest-neighbor vectors δn;
under uniform strain, transform as the basis vectors ai according
to the standard Cauchy–Born rule,

a0i ¼ �I þ �ϵÞ � ai;ð ð1Þ

where �I is the (2� 2) identity matrix. However, the deformed
nearest-neighbor vectors δ0n follow a more general rule,[12–17]

which for graphene-like materials results as,
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δ0n ¼ �I þ �ϵÞ � δn þ Δ;ð ð2Þ

where Δ is a relative displacement vector
between the two sublattices due to addi-
tional freedom degrees introduced by the
basis atoms (see Figure 1). Recently, by
minimizing its strain energy parametrized
in terms of the bond vectors within a
valence force model, Midtvedt et al.[16]

obtained up to linear order in �ϵ for
graphene that

Δ ¼ � κa
2

2ϵxy; ϵxx � ϵyy
� �

; ð3Þ

where κ� 2/5 and a is the intercarbon
distance for pristine graphene. The analyti-
cal expression (3) is referred to a Cartesian
coordinate system with the x(y) axis along the zigzag (armchair)
direction of the honeycomb lattice. Note that if graphene is
stretched along a direction that is perpendicular to a bond,
according to the generalized Cauchy–Born rule (2) this bond
changes, in contrast, it is not modified by assuming the standard
Cauchy–Born rule (1) for the nearest-neighbor vectors (see
Figure 1). In Midtvedt et al.,[16] as a consequence of including Δ
in a low-energy analysis of the electronic behavior in strained
graphene, it was reported that the strain-induced pseudomag-
netic field keeps the same functional dependence on the strain
tensor, but its strength renormalizes by a factor (1� κ)� 3/5.

In the presence of a uniform strain of few percent, it is
important to note that the principal strain effect is to modify the
Fermi velocitywhichbecomes anisotropic.[18] In fact, due to strain
theDirac cones deform fromcircular to elliptical cross-section. In
consequence, the effective Dirac Hamiltonian for uniformly
strained graphene is of the formH ¼ �hσ � �υ � q; where �υ is the
Fermi velocity tensor, q is the momentum measured from the
Dirac point and σ ¼ τσx; σy

� �
is a Paulimatrix vector that acts on

the sublattice space, with τ ¼ � being the valley index. So far the
previously reported expressions for �υ; as a function on the strain
tensor, have been derivedwithout taking into account the effect of
the relative displacement vectorΔ.[19–22]However, in order to gain
more quantitative knowledge of the strain-induced effects on
graphene, such as optical transmittance modulation,[23] asym-
metric Klein tunneling[24] or dynamical gap generation,[25,26] it is
required a precise relationship between strain and the fermion
velocity anisotropy.

The main objective of this paper is to provide a low-energy
Hamiltonian for strained graphene within the generalized
Cauchy–Born rule (2).
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Figure 1. Illustration of a portion of graphene under uniform uniaxial
stretching along the zigzag direction, such that ϵxx > 0 and ϵxy ¼
ϵyy ¼ 0: The zoom shows in light green color the unstrained bonds δn;
in green color the strained bonds following the standard Cauchy–Born
rule, and in dark green color those strained δ0n according to equation (2)
that considers the relative displacement Δ between the two sublattices.
The unstrained and strained unit cells are respectively defined by (a1, a2)
and (a01; a02).
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Effective Dirac Hamiltonian: A standard approach to obtain the
effective Dirac Hamiltonian for graphene under uniform strain
is as follows. As a starting point, we use the nearest-neighbor
tight-binding Hamiltonian, which can be represented in
momentum space by a (2� 2) matrix of the form,

H kð Þ ¼ 0 h kð Þ
h� kð Þ 0

 !
; ð4Þ

where h kð Þ ¼ �P3
n¼1 tne

�ik � δ0n ; the deformed nearest-neigh-
bor vectors δ0n are given by equation (2) and tn are the modified
nearest-neighbor hopping parameters. Usually the strain-
induced changes of the nearest-neighbor hopping parameters
are described by the exponential model tn ¼ te�β δ0nj j=að Þ�1½ �;
where β� 3 and t is the hopping parameter for pristine
graphene.[4,3] Expanding the last expression of tn up to linear
order in the strain tensor, which is the leading order used
throughout the rest of the paper, one finds

tn ¼ t 1 � βδn � �ϵ � δn � βδn � Δ�:½ ð5Þ

Then, to obtain the effective Dirac Hamiltonian one should
expand the tight-binding Hamiltonian (4) around a Dirac point
KD.

[21,22] Thus, an important step within the derivation is the
knowledge of the position of KD which is determined by the
equation, E(KD)¼ 0, where E kð Þ ¼ � h kð Þj j is the dispersion
relation resulting from Hamiltonian (4). Solving E KDð Þ ¼ 0;
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the strain-induced shift of KD from the corresponding corner K0

of the first Brillouin zone can be expressed as,

KD ¼ �I � �ϵÞ � K0 þ τA;ð ð6Þ

where

A ¼ β 1 � κð Þ
2a

ϵxx � ϵyy;�2ϵxy
� �

; ð7Þ

and τ is the valley index of K0. The expression (6) for KD only
differs from the derived one in Oliva-Leyva and Naumis[9] with
Δ¼ 0 in that the vector A, an emergent gauge field for
nonuniform deformations,[27,28] is renormalized by a factor
(1� κ). This result confirms that previously obtained in
Midtvedt et al.[16] In other words, the position (6) of KD can
be obtained by replacing β by β(1� κ) in the expression of KD

derived without taking into account the effect of the relative
displacement vector Δ.[9,22]

Once the position of the Dirac point KD is found, we perform
the expansion of the Hamiltonian (4) around KD, by means of
k¼KDþ q, and we obtain that the effective Dirac Hamiltonian
reads as,

H ¼ �hσ � �υ � q; ð8Þ
where the Fermi velocity tensor �υ is given by,

�υ ¼ v0

"
�I þ �ϵ � β�ϵ þ βκ�ϵ � βκ

2
trð�ϵÞ�I

#
; ð9Þ

with v0 ¼ 3ta=2�h being the Fermi velocity of pristine graphene.
Let us make some important remarks about the generalized

Fermi velocity tensor (9). First of all, the tensorial character of �υ
reflects the elliptic shape of the equienergy contours around KD

(see Figure 2a). In particular, it is worth mentioning that the
principal axes of �υ are collinear with the ones of the strain tensor
�ϵ; because the electronic anisotropy is only caused by the
deformation. For example, to reveal the trigonal anisotropy due
to the underlying honeycomb lattice is needed a study up to
second order in the strain tensor.[10] On the other hand, note that
making κ ¼ 0 reduces equation (9) to �υ ¼ v0 �I þ �ϵ � β�ϵ�;½
which is the Fermi velocity tensor derived without considering
Δ.[9,22] At the same time, one can see that the generalized Fermi
velocity tensor (9) can not be obtained by making the
replacement β! β(1� κ) in �υ ¼ v0 �I þ �ϵ � β�ϵ�:½ In fact, the
additional term �v0βκtr �ϵÞ�I=2ð in equation (9) leads to a
qualitatively different behavior of the Fermi velocity as a
function the strain tensor.

To illustrate this issue, let us to consider graphene subjected a
uniaxial strain of stretching magnitude ϵ along an arbitrary
direction. According to the approximation �υ ¼ v0 �I þ �ϵ � β�ϵ�;½
the Fermi velocity perpendicular to the stretching direction is
given by ν? ¼ ν0 1 þ β � 1ð Þν ϵ½ �; where ν is the Poisson
ratio.[4,10] Therefore, v? slightly increases with the increasing of
ϵ:However, from the more general expression (9), it follows that
v? ¼ v0 1 þ β � 1ð Þνϵ � βκ 1 þ νð Þϵ=2½ �: But if β � 1ð Þν <

βκ 1 þ νð Þ=2 as occurred for graphene,[16] then v? slightly
decreases with the increasing of the stretching magnitude ϵ:
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim2 of 5)
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Figure 2. a) Equienergy contours around the Dirac points, b) local densities of states (LDOS) in arbitrary units, and c) light transmittances for graphene
either unstrained (gray dashed lines) or uniaxially strained, such that ϵxx ¼ 0:1; ϵyy ¼ � νϵxx; and ϵxy ¼ 0: For each panels, the black short-long
dashed lines correspond to those from the standard Cauchy–Born rule with Δ¼ 0, while pink solid lines show results from the general transformation
rule (2). The used parameters are ν ¼ 0:16; β ¼ 3; and κ ¼ 2=5.
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Such fingerprint of the generalized Cauchy–Born rule (2) on the
Fermi velocity seems to be found by previous first-principles
calculations of strained graphene,[18] but amore detailed analysis
for small strains is required.

Effects on Scanning Tunneling Spectroscopy: From an experi-
mental point of view, the strain-induced variations of the Fermi
velocity can be measured by scanning tunneling spectroscopy
(STS),[29,30] because this technique is sensitive to the local
density of states (LDOS) which in turn depends on the Fermi
velocity. For a strained (anisotropic) two-dimensional Dirac
material described by a Hamiltonian of the form (8) with a
generic Fermi velocity tensor, its LDOS is given by,[8,12]

ρ Eð Þ ¼ ρ0 Eð Þ=det �υ=v0Þ;ð ð10Þ

where ρ0 Eð Þ ¼ 2 Ej j= π�h2υ20
� �

is the LDOS of the unstrained
(isotropic) two-dimensional Dirac material with �υ ¼ υ0�I: Then
substituting equation (9) into equation (10) and expanding up to
linear order in the strain tensor, we find that the LDOS of
strained graphene reads,

ρ Eð Þ ¼ ρ0 Eð Þ 1 þ β � 1ð Þtr �ϵÞð �;½ ð11Þ

which does not depend on κ and exactly coincides with that
obtained in Oliva-Leyva and Naumis[8] and de Juan et al.[20]

Therefore, Δ does not affect the LDOS as illustrated in
Figure 2b, so that STS measurements are insensitive to the
strain-induced relative displacement Δ between the two
sublattices, which is somewhat unexpected given the additional
change in the hopping parameters.

Otherwise, STS experiments of graphene in the presence of
an external magnetic field can also be used to search the strain-
induced variations of the Fermi velocity.[31–33] The most
remarkable feature of these STS spectra is a series of well
defined peaks at the Landau level energies, whose strain-
induced shifts can be correlated with the Fermi velocity
variations.[31–33] In general, for a generic anisotropic Dirac
material (8) in an external magnetic field B, its Landau levels
are given by[34]
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En ¼ E 0ð Þ
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det �υ=υ0Þ;ð

p
ð12Þ

where E 0ð Þ
n correspond to those of an isotropic Dirac material.

Replacing �υ into equation (12) according to the expression (9), we
arrive that the Landau level spectrum of strained graphene is,

En ¼ E 0ð Þ
n 1� β � 1ð Þtr �ϵÞ=2ð �;½ ð13Þ

which does not show dependence on κ. As a consequence,Δ does
not produce any additional shift of the LDOS peaks of strained
graphene under magnetic field. Hence, Landau level spectros-
copy also does not record observable effects of Δ, at least up to
linear order in the strain.

These findings seen irrelevant, however, they suggest that the
scanning tunneling spectroscopy could be an appropriate
technique to experimentally determine the parameter β, with
total independence of the parameter κ. As discussed below, the
knowledge of β is a prerequisite to probe the effects of Δ from
transmittance experiments of strained graphene.

Effects on Optical Measurements: Let us further explore the
effect of Δ on the optical properties of strained graphene. As
documented in Oliva-Leyva and Wang,[34] the optical response of
an anisotropic Dirac material (8) can be expressed by the
conductivity tensor,

�σ ωð Þ ¼ σ0 ωð Þ trð�υÞ
detð�υÞ�υ � �I

� �
; ð14Þ

where σ0 ωð Þ is the frequency-dependent optical conductivity of
the isotropic Dirac material with �υ ¼ υ0�I: Once again, making
the substitution into equation (14) of �υ by expression (9), the
optical conductivity tensor of strained graphene up to first order
in the strain tensor �ϵ results,

�σ ωð Þ ¼ σ0 ωð Þ �I � 2β� �ϵ þ β� tr �ϵÞ�Ið �;½ ð15Þ

where β� ¼ β(1� κ)�1.
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim3 of 5)
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A simple exploration shows that equation (15) reproduces, for
κ¼ 0, the previous results obtained within the approximation
Δ¼ 0.[8,10] Moreover, such as occur for the position of the Dirac
points, the more general conductivity tensor (15) can be obtained
from the expression for the optical conductivity derived in Oliva-
Leyva and Naumis[8] by means of the simple replacement β! β
(1� κ). Returning to the example of a uniaxial strain, it follows
from equation (15) that the optical conductivity perpendicular to
the stretching direction σ? ¼ σ0 ωð Þ 1 þ β� ϵ 1 þ νð Þ½ � increases
by the same amount that the parallel conductivity σk ¼
σ0 ωð Þ 1 � β� ϵ 1 þ νð Þ½ � decreases. Actually, this increase–de-
crease balance is broken whereas second-order terms of the
strain tensor are taken into account, because the trigonal
symmetry of the underlying honeycomb lattice is revealed.[5,10]

An observable consequence of the anisotropic optical
response of strained graphene is the periodic modulation of
its transmittance as a function of the light polarization
direction.[35] In particular, for normal incidence of linearly
polarized light on graphene in vacuum, its transmittance T
under uniaxial strain is given by,

T ¼ 1� πα 1 � β� 1 þ νð Þϵcos2ϕ½ �; ð16Þ

where α� 1/137 is the fine-structure constant and ϕ is the angle
formed by the incident-light polarization and the stretching
direction. Thus, the transmittance modulation amplitude results
ΔT ¼ 2παβ� 1 þ νð Þϵ; which allows to estimate the stretching
magnitude ϵ from the measurement of ΔT.[35] Note that such
procedure would underestimate the value of ϵ if the relative
displacement vector Δ is not considered.

Moreover, equation (16) suggests that the effect ofΔ should be
detectable by means of transmittance experiments. For example,
using typical parameters β� 3 and κ� 2/5,[16] the resulting
transmittance modulation amplitude ΔT would be 40% of its
predicted value according to Pereira et al.[5] and Oliva-Leyva and
Naumis,[23] as illustrated in Figure 2c. Therefore, such type of
experiment could confirm the presence of the relative displace-
ment between sublattices Δ, if β is previously determined, for
instance, by STS measurements.

In conclusion, we have studied the low energy electronic
properties of graphene under uniform strain by assuming that
the nearest-neighbor vectors transform according to the new rule
δn ! �I þ �ϵÞ � δn þ Δð [16] that goes beyond the commonly
used Cauchy–Born rule. Due to the consideration of the strain-
induced relative displacement vector Δ between the two
sublattices, the new obtained effective Dirac Hamiltonian H ¼
�hσ � �υ � q for strained graphene presents a Fermi velocity
tensor �υ given by equation (9) with a qualitatively different
behavior as a function the strain tensor. For example, under
uniaxial strain, the derived �υ here predicts that the Fermi velocity
perpendicular to the stretching direction decreases with
increasing strain magnitude.

Moreover, we have analyzed the effects of Δ on measurable
quantities of strained graphene, such as the LDOS and the
optical conductivity. As discussed, from STS experiments,
without and with the presence of a uniform magnetic field,
one can not observe fingerprints of Δ because, at least up to
the first order in the strain tensor, the LDOS is not modified by
Phys. Status Solidi RRL 2018, 12, 1800237 1800237 (
the occurrence of such relative displacement between
sublattices. This fact reveals that either standard STS or
Landau level spectroscopy could be adequate techniques to
determine β that usually is estimated from ab initio
calculations.

In contrast, we have demonstrated that the optical conductiv-
ity tensor (15) does record effects of the relative displacement Δ,
because it has the same functional form that previous expression
obtained for Δ¼ 0, but with renormalized parameters, i.e., β by
β(1� κ). This finding allows the use of transmittance experi-
ments to unveil the generalized Cachy–Born rule (2). As a
consequence, the effect of Δ should be considered for a more
complete interpretation of the optical measurements of strained
graphene.
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