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ABSTRACT: The reaction of tetraphenylcyclopentadienone
with Co2(CO)8 generates the mixed-valence tricobalt complex
[Ph4C4CO]Co(CO)2]2[μ-Co(MeCN)2]. In contrast to the
conventional Pauson−Khand reaction to generate cyclo-
pentadienone-ligated cobalt complexes, this method benefits
from both mild reaction conditions and high yields. Treatment
of this tricobalt complex with proton sources such as water or alcohols yields the monomeric hydroxytetraphenylcyclopenta-
dienyl cobalt complex [Ph4CpOH]Co(CO)2. Phosphite substituted monomeric cobalt complexes [Ph4CpOH]Co(CO)[P-
(OR)3] were also synthesized, and protonation of these complexes transiently formed cobalt hydride species.

■ INTRODUCTION

Redox-active ligands can exhibit synergistic behavior with
transition metals to enhance and modulate the stoichiometric
and catalytic behavior of coordination compounds.1−4 The
tetraphenylcyclopentadienone ligand on the Ru Shvo cata-
lyst5−7 acts as both a redox and proton-donor/acceptor ligand
which facilitates hydrogenation and transfer hydrogenation
reactions (Scheme 1).
The addition of H2 to the Ru(0) tetraphenylcyclo-

pentadienyl carbonyl complex is accompanied by the
conversion of a formally neutral cyclopentadienone ligand to
a formally anionic hydroxycyclopentadienyl ligand. This is an
unusual situation in which Ru(II), the species with a higher
formal oxidation state, is the reducing agent and the formal
Ru(0) species is the oxidizing agent.
The broad synthetic utility of the Shvo complex in catalytic

oxidation and reduction reactions6,8 has stimulated efforts to
generate analogous complexes, including those based on
ruthenium9−13 as well as other metal complexes (Os, Fe, Rh,
Ir, Re, Co, Ni).14−21 We sought to develop expedient synthetic
routes to hydroxycyclopentadienyl Co complexes22,23 analo-
gous to the Ru Shvo complex as there was some precedent for
the synthesis of cyclopentadienone Co complexes22,24−28 and
the related cyclopentadienyl Co complexes are known to
exhibit a broad range of stoichiometric and catalytic
activity.29−39

Herein, we report new synthetic strategies to generate
cyclopentadienone and hydroxycyclopentadienyl complexes of
Co and some initial investigations on their reactivity. These
studies include the synthesis and characterization of a
tetraphenylcyclopentadienone-ligated tricobalt mixed-valence
complex 1, the monomeric hydroxytetraphenylcyclo-
pentadienyl cobalt dicarbonyl complex 2, the monophosphite
analogues 3, 4, 5, 6, and the protonation of the latter
compounds to generate cobalt hydride intermediates.

■ RESULTS AND DISCUSSION

In the course of exploring synthetic routes to ligate
tetraphenylcyclopentadienone (tetracyclone) to cobalt, we
discovered that the reaction of Co2(CO)8 and tetracyclone
in acetonitrile at room temperature resulted in a black tar, from
which dark red crystals could be crystallized in 92% isolated
yield (with respect to tetracyclone) from benzene (Scheme 2).
This air-sensitive paramagnetic compound was characterized as
the tricobalt complex {[Ph4C4CO]Co(CO)2}2[μ-Co-
(MeCN)2] 1 by single crystal X-ray crystallography, where
two tetracyclone-ligated cobalt dicarbonyls are bridged by a
central cobalt atom (Figure 1).
As the disproportionation of Co2(CO)8 in acetonitrile is

known to yield a 2:1 mixture of anionic tetracarbonylcobaltate
[Co(CO)4]

− and dicationic [Co(MeCN)X]
2+,40 we propose

that tetraphenylcyclopentadienone reacts with the [Co-
(CO)4]

− generated in the disproportion reaction to give the
Co tetraphenylcyclopentadienolate which subsequently asso-
ciates with the cationic Co(CH3CN)

2+ to generate 1. The
syntheses of (η3-cyclopropenyl) and (η3-cyclobuteny1)cobalt
complexes from [Co(CO)4]

− are known.40,41 The syntheses of
cyclopentadienone Co complexes22,24−28 are typically carried
out by reactions of Co2(CO)8 and substituted alkynes (e.g.,
Pauson−Khand cycloaddition) at high pressure and temper-
ature to afford a mixture of products with modest yields;22,25

the alternative approach reported herein has the advantages of
both high yields and mild reaction conditions.
The solid-state structure of 1, shown in Figure 1, reveals two

different coordination geometries for Co: a central Co in a
tetrahedral geometry bound by two acetonitrile ligands and
two tetraphenylcyclopentadienolate ligands each ligated with
flanking Co in geometries typical of CpCo(CO)2

42 and other
cyclopentadienyl group 9 metal complexes.43,44
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The oxidation state of each Co in compound 1 could not be
unambiguously assigned based solely on the X-ray structure,
but coordination geometries and bond lengths are suggestive
of a mixed-valence Co(I)-Co(II)-Co(I) complex. The bond
distances and coordination geometries for the terminal cobalts
in compound 1 are most consistent with the formulation of
Co(I) centers bound to a cyclopentadienolate. The C−C bond
lengths within the cyclopentadienolate ring are nearly
equivalent (CC, 142 pm; C−C, 143−146 pm), and the
carbonyl carbon to cobalt center Co−C(O) distances (217,
218 pm; see the Supporting Information) are only slightly
longer than the other Co−C distances (206−212 pm), which
are comparable to distances observed for hydroxycyclopenta-
dienyl Co complexes.22 In contrast, Co cyclopentadienone

complexes22,27 exhibit alternating shorter and longer C−C
bonds in the five-membered ring and Co−C(O) bond lengths
that are longer than the other four Co−C lengths. These
bonding parameters for 1 resemble those reported for the
dimeric form of the ruthenium Shvo catalyst with similar C−C
bond lengths among the cyclopentadienone ring and Ru−C
distances.6

Treatment of 1 under nitrogen with proton sources such as
water or alcohols at room temperature provides an efficient
and high yielding synthesis of hydroxycyclopentadienyl cobalt
complex 2 (89% yield) (Scheme 3). The related Co

hydroxycyclopentadienyl complexes [H2Ph2CpOH]Co-
(CO)2

23 and [n-Pr2(PhMe2Si)2C5OH]Co(CO)2
22 were re-

ported previously by alternative routes in lower yields (15%
and 21%, respectively).
X-ray crystallography of orange crystals obtained from

benzene confirmed the structure as [Ph4CpOH]Co(CO)2, 2
(Figure 2), although the elemental analysis deviated from
expected values. This structure is also supported by sharp
resonances in the 1H NMR spectrum which showed a 20:1
ratio between the aromatic protons and the hydroxyl proton.
Compound 2 is stable at room temperature under a nitrogen
atmosphere, but it slowly decomposes under nitrogen above 50
°C.

Scheme 1. Thermolysis of Ru Shvo Dimer Generates (Hydroxytetraphenylcyclopentadienyl) Ru-H and
Tetraphenylcyclopentadienone Ru Complexes

Scheme 2. Synthesis and Proposed Mechanism for Formation of 1

Figure 1. Molecular structure of 1 (50% thermal ellipsoids).
Hydrogen atoms are omitted for clarity. Bond lengths and angles
can be found in the Supporting Information.

Scheme 3. Synthesis of Compound 2 from 1
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The infrared spectra reveal carbonyl bands υ(CO) at 1918,
and 1991 cm−1 for compound 1 and 1951 and 2010 cm−1 for
compound 2 (KBr), comparable to those of similar complexes
(CpCo(CO)2: 2033, 1972 cm−1; Cp*Co(CO)2: 2011, 1949
cm−1; [H2Ph2C5OH]Co(CO)2: 1997, 1942 cm−1).22 The
lower υ(CO) stretching frequencies observed for 1 relative to 2
is indicative of less back-bonding from the cobalt center in 1,
consistent with the formulation of a Co(I) oxidation state for
each of the [Ph4C4CO]Co(CO)2 fragments of 1.
While cyclopentadienyl cobalt biscarbonyl complexes,

Cp′Co(CO)2, are known to undergo ligand exchange reactions
with phosphine and phosphite ligands to form mono- and bis-
substituted complexes,29,31,45 attempts to replace one or both
of the carbonyl ligands of 2 with various mono- and bidentate
phosphine ligands were unsuccessful (see the Supporting
Information). However, compound 2 reacts cleanly with
tertiary phosphites at room temperature to yield mono-
phosphite substituted complexes [Ph4CpOH]Co[P(OMe)3]-
(CO) 3, [Ph4CpOH]Co[P(OEt)3](CO) 4, [Ph4CpOH]Co-
[P(OiPr)3](CO) 5, and [Ph4CpOH]Co[P(OPh)3](CO) 6 in
quantitative yields (Scheme 4).

Compounds 3−6 were characterized by 1H, 31P, 13C NMR
and elemental analysis. The trends in the carbonyl stretching
frequencies (υ(CO): 2, 1951 cm−1 > 6, 1940 cm−1 > 3, 1930
cm−1 > 4, 1929 cm−1 > 5, 1920 cm−1) are also in the order of
electron donating ability of the substituted ligand according to
Tolman’s Electronic Parameter46 (CO < P(OPh)3 < P(OMe)3
< P(OEt)3 < P(OiPr)3).
Co complexes 2−6 were subjected to protonation by

different acids under various conditions (see the Supporting
Information). While several attempts were made to protonate
compound 2, 1H NMR revealed the formation of the trans-
hydrogenated tetracyclone ligand, 2,3,4,5-tetraphenyl-

cyclopent-2-en-1-one,47 and unidentified paramagnetic prod-
ucts. In contrast, treatment of compound 3 with tetrafluor-
oboric acid etherate exhibited a transient formation of an
intermediate characterized as the cationic 3-H by 1H NMR
with clear 2JHP coupling (72.8 Hz). In situ high resolution mass
spectroscopy of this reaction mixture revealed an ion at m/z
597.1249, consistent with the Co-H complex [(C5Ph4OH)-
Co(H)(CO)P(OMe)3]

+ (Scheme 5). Analogous reactivity was

observed for compounds 4, 5, and 6. Unfortunately, further
characterization or isolation of these species was not possible
due to their instability at room temperature. In situ treatment
of 3-H with a stoichiometric amount of acetone did not result
in any conversion of acetone or the generation of isopropanol
after 2 h, but signals due to the Co-H slowly diminished over
the course of the experiment. Further evaluation of the
reactivity of 3-H was compromised by the limited solution
stability of this compound. Koelle et al. have shown that
cyclopentadienyl cobalt phosphine- and phosphite-ligated
complexes are basic enough to be protonated by mild acids
in organic solvents to form cobalt hydride species that exhibit
sufficient chemical stability to persist in dilute solutions.31,48

The lower stabilities of the cobalt hydride species derived from
3−6 can be attributed to the π-acidic nature of tetracyclone
and carbonyl ligands compared with the relatively electron rich
Cp ligand.

■ CONCLUSION
In conclusion, a rare mixed-valence cyclopentadienone ligated
tricobalt complex 1 was directly synthesized in good yields by a
simple reaction starting from the commercially available
tetraphenylcyclopentadienone ligand and Co2(CO)8. The
mixed-valence nature of 1 can potentially provide a wide
range of applications,26−28,49,50 and it serves as a good
intermediate toward the synthesis of hydroxytetraphenylcyclo-
pentadienyl cobalt complexes. Hydrogenative cleavage of 1
results in clean formation of monomeric hydroxytetraphenyl-
cyclopentadienyl cobalt complex 2. Phosphite substituted
monomeric cobalt complexes 3−6, [Ph4CpOH]Co(CO)[P-
(OR)3], were also synthesized, and protonation of these
complexes yielded in situ cobalt hydride species. We are
currently exploring the detailed characteristics of these
complexes and their potential use as catalysts and electro-
catalysts.

■ ASSOCIATED CONTENT
*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.organo-
met.8b00486.

Experimental procedures, characterization data, and
spectra (PDF)

Figure 2. Molecular structure of 2 (50% thermal ellipsoids).
Hydrogen atoms are omitted for clarity. Bond lengths and angles
can be found in the Supporting Information.

Scheme 4. Synthesis of Compounds 3−6 from 2

Scheme 5. Protonation of Compounds 3−6 and Formation
of Cobalt Hydrides
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