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Abstract: In this feature article, a specific overview of resonance energy transfer (FRET) in
dendritic molecules was performed. We focused mainly on constructs bearing peripheral pyrene
groups as donor moieties using different acceptor groups, such as porphyrin, fullerene C60,
ruthenium-bipyridine complexes, and cyclen-core. We have studied the effect of all the different
donor-acceptor pairs in the energy transfer efficiency (FRET). In all cases, high FRET efficiency values
were observed.
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1. Introduction

Since their discovery at the end of the 80’s, the scientific community has been very interested
in dendrimers due to their well-defined nanostructures that confer them outstanding chemical and
physical properties [1–3]. The special attention accorded to dendrimers is essentially due to their
potential applications in diverse fields such as in catalysis, drug delivery and photoactive materials [4–10].
The investigation of the photophysical properties of these molecules is very attractive and depends
in large measure on the architecture of these perfectly branched macromolecules. The incorporation
of photoactive units into dendrimers can be achieved by attaching them covalently or noncovalently
in three possible locations: periphery, branches, or core. Many photoactive chromophores have been
linked to dendrimers through covalent bonds to produce highly luminescent materials [11,12].

Depending on the selected photoactive molecules and their position in the dendritic construct,
different phenomena, such as fluorescence resonance energy transfer (FRET), excimers, and charge
transfer (CT) can take place [13]. The study of those processes is very important, since it helps us to
make innovations to improve the efficiency of existing photovoltaic devices [13–17]. With that aim,
many scientists have focused their research on the design and study of various dendritic molecules
introducing different chromophores with particular optical and photophysical properties [18–21].

Among the available chromophores, pyrene is considered the most used fluorescent dye in the
study of labelled polymers [22], and there are some reviews covering the most important aspects
of its fluorescent properties [23–31]. The use of pyrene as a fluorescent label to study polymers of
different lengths and architectures is prevalent because of its unique photophysical behavior, mainly its
tendency to form excimers. Pyrene moieties have been attached to numerous macromolecules [32,33]
in order to investigate micellization, polymer, and dendrimer dynamics [34], and for the development
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of new π-conjugated polymers and oligomers with pyrene units [35,36]. This phenomenon has been
also observed in dendritic structures bearing pyrene previously reported [37–39]. Numerous dendritic
architectures with photoactive groups have been reported so far, but there are only a few examples
where pyrene has been covalently attached jointly with the presence of an acceptor group to give an
efficient energy transfer (FRET) for light-harvesting purposes.

Optical and Photophysical Features of Pyrene

Pyrene as a chromophore has outstanding optical properties, like elevated quantum yield,
long fluorescence lifetime, and excimer emission, depending on its local concentration [22]. That is
why it is often used as a probe to test dynamic processes of polymers in solution that take place in the
pyrene lifetime regime [22–27]. Other interesting features of pyrene are its potential use in dyads for
solar energy conversion and as its use in the exfoliation of carbon nanotubes (CNT) and graphene [40].

We have investigated the photophysical properties of various polymers and compounds bearing
pyrene [36]. Pyrene has been also incorporated into various macromolecules with the aim to develop
novel photoactive materials [35,36,41–46]. Furthermore, we have designed a Fréchet-type dendron
containing an increasing number of pyrene moieties with the generation number. It these constructs,
pyrene acts as donor in a dual way, from the monomer or excimer emission, depending on the structure
of the dendron. The absorption and emission spectra of the dendron of the first generation (Py2-G1OH)
as well as of the dendron of the second generation (Py4-G2OH) is shown in Figure 1.
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and second (Py4-G2OH; black line) generations pyrene-labelled dendrons in THF. [Py] = 1.25 × 10–6

M; λex = 344 nm. Reprinted with permission from (Zaragoza-Galán, G., Fowler, M.A., Duhamel, J.,
Rein, R., Solladié, N., & Rivera, E. (2012). Synthesis and Characterization of Novel Pyrene-Dendronized
Porphyrins Exhibiting Efficient Fluorescence Resonance Energy Transfer: Optical and Photophysical
Properties. Langmuir, 28(30), 11195–11205.). Copyright (2012) American Chemical Society [47].

Based on the obtained results, we designed dendritic systems bearing different donor-acceptor
pairs that behave as molecular antennae, keeping pyrene as the donor group, such as
pyrene-porphyrin [47], pyrene-fullerene [48], pyrene-ruthenium bipyridine complexes [49], and the
pyrene-cyclen core [50].
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2. Dendritic Molecules Bearing Peripheral Pyrene Groups as Donors and a Porphyrin as
an Acceptor

Porphyrins belong to an important category of fluorophores, deeply investigated in materials
science [51–53]. The development of novel porphyrins and multiporphyrinic systems attracted our
attention because of their potential applications in various fields such as nonlinear optics (NLO),
to photon absorption, molecular wires, and catalysis [54–57]. Porphyrins have been covalently
functionalized with various electro- and photoactive groups with the aim to tune their opto-electronic
and photophysical properties. In particular, we can modify the donor-acceptor character of porphyrins
by linking them covalently with photoactive groups or by coordinating them with different metal
ions [58–60].

Even though the synthesis and the study of the optical and photophysical properties of many
porphyrinic compounds attached to electro- and photoactive groups like for example fullerene C60 [58]
and anthracene [59] or other functionalized porphyrins [60] have been published, there are only a few
reports about porphyrin–pyrene systems [61]. Moreover, none of these reports is an investigation about
light harvesting or the energy transfer phenomenon. Provided that monomer and excimer emissions of
the pyrene [22] are partially superimposed with the Soret absorption band of porphyrins (λ = 419 nm
for tetraphenyl porphyrin (TPP) and λ = 423 nm for its Zn-metallated derivative (ZnTPP)) [62–64],
we can expect a very efficient fluorescence resonance energy transfer (FRET) in structures labelled
with these two chromophores. Therefore, no less than three different photophysical processes can take
place in these structures at the same time. Firstly, an excimer can be generated by the pyrenyl pendant
groups; secondly a FRET phenomenon can occur from an excited pyrene unit or an excimer to the
porphyrin, respectively. Provided that dealing with a single photophysical process taking place in an
intramolecular way in a photoactive dendritic molecule is problematical to study, dealing with three
simultaneous processes is a real photophysical challenge. Fortunately, the involved photophysical
processes depends in large measure on controllable molecular parameters that can be modified in
order to selectively affect only one photophysical process and allow a reasonable characterization of all
photophysical processes. Definitely, pyrene excimer formation and FRET are significantly dependent
on the pyrene content and the donor (pyrene monomer and excimer)-acceptor (porphyrin) distance.

These features were seriously considered to develop two series of dendritic molecules labelled
with pyrene and porphyrin. First- and second-generation poly(aryl ether) dendrons totally
functionalized in the periphery with 1-pyrenebutyl units were prepared to take advantage of the
elevated excimer emission that happens with increasing the generation of the dendritic constructs
containing pyrene [34,37]. Furthermore, a porphyrin unit was attached to the focal point of the
pyrene-labelled dendrons through a flexible spacer. Given that in a dendron the distance from
the periphery and the focal point augments at higher generations, growing the generation of the
pyrene-labelled dendrons from 1 to 2 augmented the distance between pyrene units and porphyrin,
thereby diminishing the efficiency of FRET. Thus, growing the generation of the dendron employed
in these dendritic structures increased excimer formation thereby decreasing the FRET efficiency.
The structures of these dendritic molecules are illustrated in Figure 2. The synthesis of the dendronized
porphyrins as well as the effect that the structural changes induce in the optical and photophysical
processes has been studied in detail [47].

The synthesis and characterization of this constructs has been reported by our research group [47].
These characterization of the molecules was carried out by FT-IR, 1H NMR, 13C NMR, UV–VIS
spectroscopy, and MALDI-TOF MS [47].

Absorption spectra of the dendronized porphyrins (Py2-TMEG1 and Py4-TMEG2) are illustrated
in Figure 3. Py2-TMEG1 and Py4-TMEG2 exhibited the maximun absorption band at λ = 344 nm,
arising from the S0 → S2 transition of pyrene, followed by the Soret band of the porphyrin at 416 nm
(λ = 414 nm for Py2-TMEG1, and λ = 418 nm for Py4-TMEG2). The porphyrin unit exhibit also four
Q bands, which appear in the range between 450 and 700 nm. Since the absorption spectra of the
obtained dendronized porphyrins are the sum of the absorption spectra of their individual precursors
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having pyrene and porphyrin elements, we can affirm that there is no interaction between pyrene and
porphyrin in the ground state [47].
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Figure 2. Structure of the dendronized porphyrins containing first-generation and second-generation
Fréchet-type dendrons [47].
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Figure 3. Absorption (dashed line) and fluorescence (solid line) spectra of Py2-TMEG1 (red line),
Py4-TMEG2 (thin black line), and fluorescence spectrum of TME (porphyrin precursor without pyrene
units) (thick black line with a low fluorescence intensity at 651 nm) in THF. [Py2-TMEG1] = 5.1× 10–7 M;
[Py4-TMEG2] = 2.6× 10–7 M; and [TME] = 2.5× 10–6 M; λex = 344 nm. Reprinted with permission from
(Zaragoza-Galán, G., Fowler, M.A., Duhamel, J., Rein, R., Solladié, N., & Rivera, E. (2012). Synthesis
and Characterization of Novel Pyrene-Dendronized Porphyrins Exhibiting Efficient Fluorescence
Resonance Energy Transfer: Optical and Photophysical Properties. Langmuir, 28(30), 11195–11205.).
Copyright (2012) American Chemical Society [47].

Fluorescence spectra of Py2-TMEG1 and Py4-TMEG2 were recorded exciting at 344 nm in THF
solution at room temperature (Figure 3). The obtained spectra were showing two emission bands at
376 nm and 476 nm corresponding to the monomer and excimer bands of pyrene, respectively, that are
comparable with the emission bands of the precursor pyrene-labelled dendrons. Nevertheless, we can
also observe a new band at 651 nm due to the porphyrin emission. The ratios between the excimer
intensity/monomer intensity (IE/IM) were calculated for Py2-TMEG1 and Py4-TMEG2. The obtained
values were 0.58 and 1.46, respectively. Those values were much lower than the values obtained for
the pyrene dendron precursors Py2-G1OH and Py4-G1OH (0.69 and 3.05, respectively).
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Time-resolved fluorescence experiments revealed that the pyrene fluorescence quenching happens
with an energy transfer rate constant value of 2.3 and 1.8 × 109 s–1 for Py2-TMEG1 and Py4-TMEG2,
respectively. Such rate constants are the proof of a highly efficient quenching mechanism. Regardless
the IE/IM ratio, a more than 30-fold decrease in fluorescence intensity can be seen when the dendrons
and the porphyrin are covalently attached, exhibiting a very efficient FRET from an excited pyrene
monomer or excimer to the porphyrin. Indeed, pyrene fluorescence in the porphyrinic construct
Py2-TMEG1 and Py4-TMEG2 suffer a quantitative quenching (99% and 97%, respectively) as shown in
Table 1.

The fluorescence band observed at 651 nm, exciting at 344 nm, comes from the porphyrin unit of
compounds Py2-TMEG1 and Py4-TMEG2. This emission is more intense than that observed after direct
excitation of TME (precursor porphyrin without pyrene) in solution (Figure 3). The donor (pyrene
monomer and excimer) showed a remarkable decrease in fluorescence intensity while the acceptor
(porphyrin) exhibited an enhancement in fluorescence intensity, which is a clear indication that FRET
is occurring in the pyrene–porphyrin dendritic constructs Py2-TMEG1 and Py4-TMEG2. EFRET values
and quantum yields are summarized in Table 1.

Table 1. Quantum yields and FRET efficiency for pyrene-labelled dendrons and pyrene dendronized
porphyrins. Reprinted with permission from (Zaragoza-Galán, G., Fowler, M.A., Duhamel, J., Rein,
R., Solladié, N., & Rivera, E. (2012). Synthesis and Characterization of Novel Pyrene-Dendronized
Porphyrins Exhibiting Efficient Fluorescence Resonance Energy Transfer: Optical and Photophysical
Properties. Langmuir, 28(30), 11195–11205.). Copyright (2012) American Chemical Society [47].

Compound

Quantum Yield (Φ) Quantum Yield (Φ)

EFRET
cPyrene Units a Porphyrin Units b

λex = 344 nm λex = 344 nm

PyBuOH 0.52 - -
(±error) d (0.03)
TME - 0.0015 -
(±error) d (0.0001)
Py2-G1OH 0.63 - -
(±error) d (0.02)
Py4-G2OH 0.60 - -
(± error) d (0.03)
Py2-TMEG1 0.008 0.0015

0.99(±error) d (0.001) (0.00005)
Py4-TMEG2 0.018 0.0014

0.97(±error) d (0.003) (0.0001)
a All reported fluorescence quantum yields were determined using the fluorescence quantum yield of pyrene in
cyclohexane as a reference which has been reported to equal 0.32 [65]. b This value is the fluorescence quantum
yield of the porphyrin core having undergone FRET from an excited pyrene to the porphyrin. It is calculated by
integrating the porphyrin fluorescence intensity in Figure 3 between 580 and 680 nm, after the fluorescence spectrum
was correct to account for the direct excitation of porpyrin. c EFRET is the FRET efficiency, calculated using the
following equation:

EFRET = 1−
I(Py+Por)

I(Py)
(1)

where I(py+por) is the absolute fluorescence intensity of one mole of pyrenyl pendant in a dendron and I(py) is the
absolute fluorescence intensity of one mole of pyrene attached to the corresponding dendron. d All experiments
were conducted in triplicate.

In function of the distance pyrene-porphyrin (dPy−Por), we can expect a decrease in FRET efficiency
in Py4-TMEG2, with respect to Py2-TMEG1. Nevertheless, if the increase of the distance dPy−Por is not
enough to overcome the Förster radius (R0), this change in the FRET efficiency will not be observed.
As a result, very high FRET efficiencies were observed for both generations of our dendrimer leading
to the conclusion that the pyrene and porphyrin units in our constructs are located well within the R0

value (5.2 nm) determined for this pair of chromophores. This assumption was confirmed by molecular
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mechanics calculations to estimate the longest possible pyrene-porphyrin distance in a stretched
conformation of the molecules [47]. It is not realistic to expect that the dendritic molecules remain
stretched in solution since they tend to adopt a coiled conformation. The donor-acceptor distance in
these constructs was found to be 3.0 and 3.5 nm for Py2-TMEG1 and Py4-TMEG2, respectively, well
under the 5.2 nm R0 value, showing that efficient FRET occur in these dendritic molecules (Table 2).

We can observe that FRET efficiency is not affected by the quantity of excimer emission arising
from the pyrene-containing dendrons since the FRET efficiency is not affected by the amount of excimer
formed in the pyrene dendron precursors. This fact reveals that excimer formation would takes place
after the FRET process occurs from the monomer emission to the porphyrin acceptor and that it does
not have a contribution to the whole FRET process. Time-resolved fluorescence experiments showed
that FRET from excited pyrene monomer to the porphyrin core take place more than 10 times faster
than the formation of pyrene excimers in the pyrene dendrons. From these results, we can affirm
that FRET from the excited pyrene monomer to the porphyrin is very efficient and occurs before the
formation of the excimer.

A second series of dendrimers bearing first-generation Fréchet-type pyrene-labelled dendrons
and a porphyrin as the core was synthesized and characterized by our group [66]. The obtained
free base porphyrins were further metallated with Zn. The structure of the obtained porphyrins
was characterized by 1H NMR spectra and confirmed by MALDI-TOF mass spectrometry [66].
The electrochemical properties and charge transfer character of such systems has been also studied [67].
The structure of this series of dendrimers is illustrated in Figure 4.
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and a porphyrin core [66].

The absorption spectra of the porphyrinic dendrimers in THF solution are shown in Figure 5.
In the absorption spectra of these compounds, we can see the typical S0 → S2 absorption band of the
pyrene group centered 344 nm, as well as the Soret band of the porphyrin (free base or metalated),
which appear at about 420 and 426 nm, respectively. Usually, the free porphyrin derivatives exhibit
four Q bands situated between 513 and 647 nm, whereas the zinc metallated porphyrins show only
two Q bands in the same UV–VIS region.
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and Fully Labelled Pyrene Dendronized Porphyrins Studied with Model Free Analysis. The Journal of
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A slight shift of the absorption band of the porphyrin moiety was observed in the series of the
porphyrinic dendrimers in function of the amount of mesityl groups present in the construct. The Soret
band of the free porphyrins shifted from 421 to 420, 419, and 418 nm when going from Por-(Py2G1)4 to
Por-(Py2G1)3, Por-(Py2G1)2, and Por-(Py2G1). Likewise, the Soret band of the metalated porphyrins
shifted from 427 to 425 nm when going from Zn-Por-(Py2G1)4 to Zn-Por-(Py2G1)2.
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The absorption spectra of the free-base dendronized porphyrins Py2-TMEG1 and Py4-TMEG2
resulted to be the sum of the absorption spectra of 1-pyrenebutanol and porphyrin, so that we can
realize that negligible to no electronic interactions occur between both chromophores.

The fluorescence emissions of all dendrimers based on a porphyrin core were recorded and the
absolute emission spectra are shown in Figure 6. If we compare the Y-axes on the left and on the
right corresponding to the porphyrinic compounds and 1-pyrenebutanol (quantum yield of 0.52),
respectively, we can realize how efficient is FRET from an excited 1-pyrenebutoxy to the ground-state
of the porphyrin unit. A reduction in the fluorescence emission intensity of more than two orders of
magnitude was observed.

A remarkable FRET efficiency was expected in these dendritic constructs given that the distance
between the center of the porphyrin and the center of the pyrenyl unit in a fully extended conformation
(dPor−Py

EXT) varies between 18 and 35 Å depending on the dendritic construct. The Förster radius
(R0) value was to equal 51.8 ± 0.2 and 48.7 ± 0.3 Å for a free-base and a Zn-metalated porphyrin,
respectively (Table 2). The distance dPor−Py

EXT included in Table 3 was calculated by means of
molecular mechanics optimizations, using the program Hyperchem (Hypercube, ink., Gainesville,
FL, USA). Since dPor–Py

EXT is much smaller than R0 for all the dendronized porphyrins, FRET is
expected to take place on a faster time scale than the formation of excimers within a Py2-G1OH or
Py4-G2OH dendron.
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) is shown in all figures with its intensity reported
on the secondary axis on the right hand side. Reprinted with permission from (Zaragoza-Galán, G.,
Fowler, M., Rein, R., Solladié, N., Duhamel, J., & Rivera, E. (2014). Fluorescence Resonance Energy
Transfer in Partially and Fully Labelled Pyrene Dendronized Porphyrins Studied with Model Free
Analysis. The Journal of Physical Chemistry C, 118(16), 8280–8294). Copyright (2014) American Chemical
Society [66].
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Table 2. Förster radii (R0), pyrene monomer quantum yield (ϕPy), and porphyrin quantum yield (ϕPor)
obtained by exciting the solutions at 344 nm. Reprinted with permission from (Zaragoza-Galán, G.,
Fowler, M., Rein, R., Solladié, N., Duhamel, J., & Rivera, E. (2014). Fluorescence Resonance Energy
Transfer in Partially and Fully Labelled Pyrene Dendronized Porphyrins Studied with Model Free
Analysis. The Journal of Physical Chemistry C, 118(16), 8280–8294). Copyright (2014) American Chemical
Society [66].

Without Zn With Zn

Compound R0 (Å) ϕPy (×104) ϕPor (×104) R0 (Å) ϕPy (×104)
ϕPor

(×104)

Por-(Py2G1)4 51.4 6 15 48.3 1 27
Por-(Py2G1)3 51.8 16 15
Por-(Py2G1)2 51.5 12 15 48.5 2 34
Por-(Py2G1)1 51.8 25 15
Py2-TMEG1 52.0 13 14 48.9 12 39
Py4-TMEG2 52.0 18 14 49.0 23 38

Table 3. FRET efficiency and dPor−Py
EXT for porphyrinic constructs. Reprinted with permission from

(Zaragoza-Galán, G., Fowler, M., Rein, R., Solladié, N., Duhamel, J., & Rivera, E. (2014). Fluorescence
Resonance Energy Transfer in Partially and Fully Labelled Pyrene Dendronized Porphyrins Studied
with Model Free Analysis. The Journal of Physical Chemistry C, 118(16), 8280–8294). Copyright (2014)
American Chemical Society [66].

Without Zn With Zn

Compound EFRET (SS) EFRET (SPC) dPor–Py
EXT (Å) EFRET (SS) EFRET (SPC) dPor–Py

EXT (Å)

Por-(Py2G1)4 0.999 1.000 18.2 1.000 1.000 17.8
Por-(Py2G1)3 0.997 1.000 18.2 17.8
Por-(Py2G1)2 0.998 1.000 18.2 1.000 0.999 17.8
Por-(Py2G1)1 0.995 1.000 18.2 17.8
Py2-TMEG1 0.997 0.998 30.2 0.998 0.998 29.9
Py4-TMEG2 0.998 0.997 34.9 0.996 0.996 34.7

This conclusion was verified experimentally by time-resolved fluorescence experiments.
The fluorescence decays of the pyrene monomer and porphyrin in compounds Py2-TMEG1 and
Py4-TMEG2 were analyzed applying the model free analysis (MFA) [66]. In these constructs an excited
pyrene units transfers their excess energy so efficiently to the porphyrin core that it is deactivated
before having the possibility to interact with a ground-state pyrene to give an excimer. Therefore, it can
be deduced that the presence of an excimer emission band in the recorded spectra (Figure 6) for the
porphyrin-cored dendritic structures is due to the small amount of impurities of pyrene derivatives.

3. Dendritic Molecules Bearing Peripheral Pyrene Groups as Donors and a Fullerene as Acceptor

Recently, interest for materials based on fullerene C60 derivatives has increased since this
type of materials has promising properties for the development of new materials for technological
applications. Particularly, performances of fullerene-based compounds have been reported for solar
energy conversion [68,69]. After this discovery [70], many strategies to functionalize the fullerene C60

were proposed [71–75] in order to generate new kinds of materials. The reason for this interest is due
to its chemical and physical proprieties, such as for example its absorption in the UV region of the
electromagnetic spectra [76]. The main drawback of the fullerene C60 is that it is poorly soluble in
organic solvents [77,78]. Fullerene C60 can be synthetically modified in order to increase its solubility
without affecting its photophysical and electrochemical properties [76,79]. Fullerene C60 derivatives
possess a large variety of applications that are ranging from chemosensors [80–83] to biological
probes [84–86] and photocatalyst [87–90]. A large number fullerene based dyads have been published,
however, there are only a few reports about pyrene-fullerene C60 derivatives [91–94].



Polymers 2018, 10, 1062 10 of 24

We have reported a new series of pyrene-fullerene C60 dyads, and we have studied their optical
and photophysical properties (Figure 7) [48].
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UV–VIS analysis for the pyrene-fullerene C60 dyads was performed in toluene (Figure 8).
It showed that the series exhibited the characteristic bands of the pyrene chromophore at 346 nm
due to S0 → S2 transition. No remarkable change was observed for this transition in comparison
with 1-pyrenebutanol, the compound used as model in this experiment. Moreover, for all the
pyrene-fullerene C60 dyads the absorption band at 330 nm was more intense that the band observed
in the spectra of 1-pyrenebutanol at the same wavelength and the absorption was extended in the
visible region. Those two features were attributed to the fullerene C60 cage. In the case of PyFPy,
a strong band at 330 nm followed by another intense band at 346 nm were observed. The first one
was attributed to the C60 cage and the second one to the pyrene absorption. Contrarily, in the case of
PyFC12 and Py2FC12 the pyrene bands are more resolved due to the higher concentration of pyrene in
the molecules.
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Figure 8. Absorption spectra of pyrene-fullerene C60 compounds [48].

The fluorescence spectra of the compounds show the typical emission of pyrene monomer at
376 nm as illustrated in Figure 9. Only compounds PyFPy, Py2FC12 and Py2NF are able to form
excimers due to the presence of two pyrene units in the structures. In the case of PyFPy, the excimer
formation is blocked by the presence of the C60 cage that obstruct rapprochement of both pyrene
units and in the spectra, there are no signal for the excimer emission (Figure 9). On the other hand,
compounds Py2FC12 and Py2NF present the two pyrene units that are free of the fullerene steric
influence and, therefore, the excimer formation is possible. This behavior is supported by the presence
of the excimer band at 470 nm (Figure 9).
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The relative quantum yield was calculated using 1-pyrenebutanol as standard. The obtained
values are shown in Table 4. The emission of the malonate precursors that are not containing a fullerene
unit was much higher than the emission of the pyrene-fullerene constructs. Low quantum yield
values obtained for the pyrene-fullerene C60 constructs and the corresponding values of quenching
corroborated that efficient FRET between pyrene and fullerene C60 chromophores is taking place [48].
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Table 4. Relative quantum yield and FRET efficiencies of the pyrene-fullerene C60 compounds [48].

Compound Relative Quantum Yield a % Quenching

1-Pyrenbutanol 1 (Donor) -
PyFC12 0.01 (Dyad) 99%
PyFPy 0.01 (Dyad) 99%

Py2FC12 (Dyad) 99%
Py2NF 0.04 (Dyad) 96%

a Measured in degassed toluene solution exciting at λ = 344 nm. Relative QY of the dyads, with respect to the donor
molecules (1-pyrenebutanol and PyMPy in the range of 360 nm–560 nm.

4. Dendritic Molecules Bearing Peripheral Pyrene Groups as Donors and an Organometallic
Complex as Acceptor

It is of interest to include metal ions in the structure of dendrimers in order to obtain complex
molecules combining the properties of both entities; the structural ordered properties from the dendritic
shell and the redox properties from metal ions [95,96]. In the literature, many examples of metal ions
incorporated in dendrimers have been reported with different applications, such as drug carrier,
catalysts, and enzyme mimics [97,98]. In some cases, the resulting organometallic complexes are able
to accept energy transfer from a donor moiety [99–101].

The specific case of the incorporation of ruthenium bipyridine complexes into photoactive
dendrimer has been studied [102–105]. Ruthenium bypiridine complexes have attracted the attention
of many researcher due to chemical stability, redox properties, as well as fluorescence emission and
excited state lifetime [106]. The complexes of ruthenium with bipyridine ligands are presenting typical
UV–VIS spectra. The first band observed at about 280 nm corresponds to the ligand centred (LC)
transition and the second band observed in a range from 450 to 480 nm corresponds to the metal to
ligand charge transfer (MLCT) band. The long-lived emission occurs from the 3MLCT state with low
quantum yield [107,108]. Ruthenium bipyridine complexes are able to accept energy transfer from
fluorescent donors through FRET [109]. Moreover, one application of this type of compound include
the field of dye-sensitized solar cells [110,111].

Coordination complexes of ruthenium incorporating pyrene units have been reported [112].
Moreover, ruthenium bipyridine complex covalently linked to pyrene units have shown prolonged
emission lifetime due to the fact that the energy levels of the 3MLCT state of the ruthenium complex
and of the pyrene triplet state can be tuned to almost match each other. Therefore, we used our
pyrene-based dendrimer to design new organometallic complexes of ruthenium. The benzylic core of
our dendrimer was modified to a bipyridine core in order to obtain a suitable ligand to form ruthenium
complexes [49].

We designed and synthesized new organometallic complexes bearing 2, 6, and 12 pyrene
units in the periphery and a bipyridine core ([Ru(Bpy)2(Bpy-Py2)]2+, [Ru(Bpy-Py2)3]2+ and
[Ru(BpyG1-Py4)3]2+) (Figures 10 and 11). The obtained compounds showed absorption spectra
that are reflecting the absorption properties of a pyrene moiety and of the corresponding bipyridine
complex measured separately (Figure 12). This is an indication that, when the compounds are
present in the ground state, both chromophores are not interacting. The absorption band of pyrene
is observed at 344 nm for the S0 → S2 transition for the three complexes. The absorption bands of
the ruthenium bipyridine complexes depend on the substitution of the bipyridine ligand. In the
case of [Ru(Bpy)2(Bpy-Py2)]2+, the MLCT band was observed at 462 nm. A red shift to 480 nm
is observed for the other two complexes [Ru(Bpy-Py2)3]2+ and [Ru(BpyG1-Py4)3]2+. This is due
to the stabilization effect of the oxygen atoms that are directly linked to the bipyridine moieties.
The corresponding extinction coefficient are also corresponding to the respective components of
the complexes. The absorption band of pyrene presents a high extinction coefficient and increases
proportionally with the increasing number of pyrene units. The extinction coefficient of the MLCT
transition band presents values of about 12,000 M−1 cm−1 which is comparable to the reported values
for MLCT transitions of ruthenium bipyridine complexes.
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Figure 12. Absorption spectra of Ru(II) trisbipyridine complexes [Ru(Bpy)2(Bpy-Py2)]2+ (black) in
acetonitrile and [Ru(Bpy-Py2)3]2+ (blue) and [Ru(BpyG1-Py4)3]2+ (red) in THF. “Reprinted from
Polymers, 99, Vonlanthen, M.; Cevallos-Vallejo, A.; Aguilar-Ortíz, E.; Ruiu, A.; Porcu, P.; Rivera, E.,
Synthesis, characterization and photophysical studies of novel pyrene labelled ruthenium (II)
trisbipyridine complex cored dendrimers, 13–20, Copyright (2016), with permission from Elsevier” [49].

The obtained compounds present very efficient energy transfer from the pyrene moiety to the
metal complex core. When they are excited at the maximum of absorption of the pyrene unit at 344 nm,
weak residual emission from the pyrene units is observed but clearly quenched compared to the free
bipyridine ligands. Only 2% of residual emission of pyrene was observed for [Ru(Bpy)2(Bpy-Py2)]2+,
1% for [Ru(Bpy-Py2)3]2+, and 4% for [Ru(BpyG1-Py4)3]2+ indicating an efficient energy transfer in all
cases. For the three compounds, emission is observed in the red part of the spectrum between 600 and
700 nm corresponding to the typical emission of ruthenium bipyridine complexes (Figure 13). As for
the porphyrin dendrimers described in the previous section, the quenching of the fluorescence from the
pyrene donor is a good indication of efficient FRET process. It is important to note that when excited
at 344 nm the percentage of light absorbed by the pyrene units increases with the increasing amount
of pyrene units from 91% for [Ru(Bpy)2(Bpy-Py2)]2+ to 97 and 99%, respectively, for compounds
[Ru(Bpy-Py2)3]2+ and [Ru(BpyG1-Py4)3]2+ (Table 5).
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Figure 13. Emission spectra of the Ru(II) trisbipyridine complexes [Ru(Bpy)2(Bpy-Py2)]2+ (black)
in acetonitrile and [Ru(Bpy-Py2)3]2+ (blue) and [Ru(BpyG1-Py4)3]2+ (red) in THF. “Reprinted from
Polymers, 99, Vonlanthen, M.; Cevallos-Vallejo, A.; Aguilar-Ortíz, E.; Ruiu, A.; Porcu, P.; Rivera, E.,
Synthesis, characterization and photophysical studies of novel pyrene labelled ruthenium (II)
trisbipyridine complex cored dendrimers, 13–20, Copyright (2016), with permission from Elsevier” [49].
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Table 5. Absorption coefficients, quantum yields, and FRET efficiencies of the ruthenium-pyrene
constructs “Reprinted from Polymers, 99, Vonlanthen, M.; Cevallos-Vallejo, A.; Aguilar-Ortíz, E.;
Ruiu, A.; Porcu, P.; Rivera, E., Synthesis, characterization and photophysical studies of novel pyrene
labelled ruthenium (II) trisbipyridine complex cored dendrimers, 13–20, Copyright (2016), with
permission from Elsevier” [49].

Compound λmax abs (nm)
ε(M−1 cm−1)

λmax
(nm)

Φ Pyrene unit
λex = 344 nm c

Φ Ru (II) unit
λex = 344 nm d

Φ Ru (II) unit
λex = 452 nm d EFRET

e

[Ru(Bpy)2 342/69’000 625 - 0.0032 a 0.0052 a 0.98

(Bpy-Py2)]2+ 462/10’600 0.008 b 0.0174 b 0.0277 b

[Ru(Bpy-Py2)3]2+ 344/210’900 661 - 0.0016 a 0.0028 a 0.99
480/11’400 0.004 b 0.0026 b 0.0053 b

[Ru(BpyG1-Py4)3]2+ 344/411’000
661

- 0.0025 a 0.0029 a

0.96
0.014 b 0.0031 b 0.0050 b

480/11’200

Fluorescence measurements were done in acetonitrile ([Ru(Bpy)2(Bpy-Py2)]2+) or THF ([Ru(Bpy-Py2)3]2+ and
[Ru(BpyG1-Py4)3]2+) at 0.1 OD at 344 nm. a Aerated solution; b Deaerated solution; c Quantum yields were
determined relative to quinine sulfate (Φ = 0.546) in 0.05 M sulfuric acid for pyrene units. d Quantum yields were
determined relative to [Ru(Bpy)3]2+ (Φ = 0.016) in air-equilibrated acetonitrile solution [103]. e FRET efficiencies
were calculated according to the following equation: FRET = 1 − (IDA/ID).

Furthermore, the quenching effect of oxygen was evaluated through the measurements of
quantum yield for the ruthenium bipyridine complexes. When excited at 344 nm in degased
solutions, quantum yields values of 0.0174, 0.0026, and 0.0031 are obtained for [Ru(Bpy)2(Bpy-Py2)]2+,
[Ru(Bpy-Py2)3]2+, and [Ru(BpyG1-Py4)3]2+, respectively. The same measurements were performed
without degasing the solutions and the following quantum yields were obtained: 0.0032, 0.0016, and
0.0025 (Table 5).

The difference between the quantum yield in degased solution and in air-equilibrated solutions
is much lower for the complex bearing three times the first generation dendron (12 pyrene units)
indicating that the dendrimer branches are functioning as a protection toward oxygen quenching.
For the pyrene/ruthenium bipyridine complex pair of chromophores, we have calculated that the
Förster radius is in the order of 3.30 nm. As previously calculated for the pyrene-porphyrin couple
the expected distance between the chromophore is within the Förster distance, confirming an efficient
FRET process.

5. Dendritic Molecules Bearing Peripheral Pyrene Groups as Donors and Cyclen Core as
Potential Ligands for Metal Ions

As mentioned above, the incorporation of different metals in photoactive dendrimers have
been performed through the inclusion of porphyrin or bipyridine ligands in the structures
and this has shown potential applications in sensors, catalysis, or nanomaterials for drug
delivery [95,113]. Another efficient family of ligands for metal ions is the family of aza-macrocycles.
Efficient chelating effects have been reported from this kind of ligand towards metal ions [114–119].
1,4,7,10-teraazacyclododecane (cyclen) is part of this family and has exhibited a good coordination
with a wide variety of metals. Moreover it has been included in a wide range of constructs for diverse
applications, such as ion sensing, ion carrier, and metal diagnosis [120–124]. The coordination of
cyclen construct containing various chromophores with lanthanides has also been reported, leading to
sensitized emission from the photoactive metal ions [125,126].

Only a few reports of FRET from pyrene to lanthanide photoactive ions have been reported. Using
the cyclen as core of our pyrene-based dendrimer, we could obtain a construct that is able to complex
lanthanide ions and, consequently, a FRET process could be observed from pyrene to the photoactive
metal ion [50].

The series of dendrimers of generation zero (1), one (2) and two (3) bearing 4, 8, and 16 pyrene
units, respectively, was synthesized (Figures 14 and 15). The obtained compounds are showing the
typical absorption properties of the pyrene chromophore, increasing its extinction coefficient linearly
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with the amount of pyrene units in the construct. The emission properties of those compounds were
also studied. The amount of excimer emission in those dendrimers is increasing as expected with the
increasing number of pyrene units due to the increased local concentration of pyrene [50].
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At the time of incorporating metal ions into those dendrimers, we faced some difficulties.
The ligands appeared to be less effective as foreseen towards the complexation of lanthanide ions.
This may be due to the fact that the ligand has only four nitrogen atoms for the coordination
of metal ions and is, therefore, a teradentate ligand. Lanthanides are known to form hexa- to
octa-coordinated complexes and our ligand may not be suitable for such metal ions. Therefore, new
ligands including carbonyl group linked to the cyclen core (DOTA) were designed and synthesized (4
and 5) (Figure 16) [127].
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The synthesis was performed and the optical properties of the obtained dendrimers were
studied. The obtained photophysical characterization is very similar to that of dendrimers 1 and
2. Titration experiments, followed by fluorescence, were carried out with compounds 4 and 5 in order
to evaluate their potential for FRET studies. Sm3+, Eu3+, Gd3+, Tb3+, Er3+, and Zn2+ were tested and
fluorescence quenching was observed for all metals except for Zn2+. Figure 17 illustrates the titration
of compound 4 with Gd3+ [127]. This result is a primary indication that the complexes are formed
and that energy transfer could occur. Chelation experiments with lanthanide ions are currently being
performed in our laboratory.Polymers 2018, 10, x FOR PEER REVIEW 18 of 25 
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6. Conclusions

In our interest to study pyrene dynamics in macromolecules, we have designed dendritic
molecules bearing an increasing number of pyrene peripheral groups and various acceptor moieties
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such as porphyrin, fullerene, or ruthenium bipyridine at the core. Those molecules were expected to
function as light-harvesting antennas to funnel the energy absorbed from the pyrene groups to the
acceptor moiety.

Thus, we reported that the FRET process occurs in a very efficient manner in all the designed
constructs. When the pyrene moiety was excited at 344 nm, the energy was transferred to the ground
state porphyrin, fullerene, or ruthenium bipyridine complex. The quenching of fluorescence of pyrene
is the first indication to determine the efficiency of the FRET process. It was quantified and information
about pyrene dynamics was obtained. As a result, we could determine through MF analysis that the
excimer formation was much slower than the FRET phenomenon. A value of 11.2 × 107 s–1 was found
for the average rate constant of intramolecular pyrene excimer formation <kE>, which is much slower
than the average rate constant for FRET <kET> (1.8 × 109 s–1). For this reason, we observed that the
FRET process is more competitive than the excimer formation, it happens first, and the formation of
excimer is precluded even in the case of higher-generation dendrons.

Dendritic structures with the donor-acceptor pair pyrene-porphyrn exhibited FRET values
between 97–99% with a drastic quenching of the pyrene emission and increased emission of the
porphyrinic moiety. In the case of the pyrene-fullerene C60 constructs, FRET efficiency values were
determined in a similar range, however, unlike for the case of porphyrins, we could not observe
a final emission of the fullerene C60 acceptor group in the UV–VIS range. On the other hand,
ruthenium bipyridine complexes exhibited FRET values in the order between 96–98%, showing
an emission of the acceptor group after FRET at 661 nm. Finally dendritic constructs bearing pyrene
units as peripheral groups and a modified cyclen unit as the core also showed the FRET process after
metallation with lanthanides, which was monitored by fluorescence titrations. The quenching of the
emission of pyrene could be observed after the addition of the different lanthanide ions.
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