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A B S T R A C T

In this investigation, the capacity of citric acid as copper scavenger is analyzed. For the copper scavenger ca-
pacity, the formation of the chelate complexes is studied using the Gibbs free energies. The chelates may be
formed since the formation reactions are all exergonic. The free radical scavenger ability of chelate complexes is
investigated using the single electron transfer mechanism with the Full Electron Donor-Acceptor Map (FEDAM).
Different acid-base species of citric acid are also studied as %OH inactivating ligands (OIL). The conclusion of this
investigation is that metal chelation is viable for citric acid species and also that the formed chelates are efficient
%OH scavengers. Therefore, it is possible to conclude that citric acid is promising for copper chelation therapy
(metal scavenger). These results may be useful for further investigations concerning citric acid and can give ideas
about the benefits of citric acid as an additive in food.

1. Introduction

Copper is one of the metal cofactors of several enzymes [1]. It has
been considered as essential element for human body [2] but it can also
be accumulated up to toxic levels. High concentration of Cu in the
human body is related to oxidative damage of proteins, lipids and nu-
cleic acids, [3–8] being the Wilson’s disease the most dangerous dis-
order [9–16]. This condition is produced by the Haber-Weiss reactions
that generate toxic hydroxyl free radicals [17] as shown in what follows

Cu(II) + O2
%−→ Cu(I) + O2

Cu(I) + H2O2 → Cu(II) + OH− + %OH

To avoid the oxidative damage it is important to prevent copper
accumulation. One way to do this is with chelating agents [18–24].
These agents were previously defined as metal scavengers to distinguish
them from chelating agents with other purposes [25,26].

To recognize a good metal scavenger, a flow chart with the ques-
tions that should be answered was previously proposed [25]. According
to that proposal, a good metal eliminator form stable chelate complexes
and it is desirable that it also be a good free radical scavenger. The
chelate complex should also act as an %OH inactivating ligand (OIL).
OIL species prevent the damage caused by %OH by sequestering metal
ions from reductants in Haber–Weiss reactions (OIL-1) or by deacti-
vating %OH immediately as it is formed through Fenton-like reactions
(OIL-2). In this investigation we analyze citric acid as copper scavenger

following these ideas.
Citric acid is a weak organic acid. It is found in citric fruits and it is

also an intermediate in the citric acid cycle that occurs in the meta-
bolism of aerobic organisms. It plays numerous roles [27] and it is
ubiquitous in nature (5% by weight of lemon juice is citric acid for
example). The utilization of calcium contained in foods in higher or-
ganisms is regulated by citric acid.

Citric acid and its salts are used very often in everyday life. Along
with others, it is commonly added to foods and cold drinks as an ad-
ditive [28], in the production of cold drinks [29], to prevent lipid
oxidation in frozen fish fillets [30], to assist phyto-extraction of chro-
mium by sunflower [31] and to enhance the antioxidant defense system
and chromium uptake [32]. However, there are sometime complica-
tions and the innocence of citric acid as food additive is not always real.
It was recently reported that iron citrate complexes could be formed in
the organism [33]; these complexes are toxic since they also generate
free radicals. Authors reported that, in the absence of a pathological
situation, citric acid is probably innocuous as additive but it may be-
come dangerous under oxidative stress conditions or when there is an
iron overload. In the presence of copper, it is not known if citric acid
operates as pro-oxidant, producing Cu(I) that is a reactant of Haber-
Weiss reactions that were previously mentioned.

From the theoretical point of view, there are previous studies about
citric acid [34,35] but there are not investigations concerning its metal
scavenger capacity, neither studies about its antioxidant activity. For
this reason, in this work, we analyze the capacity of citric acid as copper
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scavenger following the steps previously reported [25]. These results
may be useful for further investigations concerning citric acid and can
give ideas about the danger or the benefits of citric acid as an additive
in food.

2. Computational details

Gaussian09 was used for all the electronic calculations [36]. Geo-
metry optimizations without symmetry constrains were carried at M06/
6-31+G(d,p) level of theory [37–41] and using the continuum solva-
tion model density (SMD) with water to mimic a polar environment
[42]. Harmonic analyses were calculated to verify local minima (zero
imaginary frequencies). The metal scavenger capacity was investigated
with the ΔG value for the following reaction:

[Citric-xH]−x + [Cu(H2O)4]2+ → Cu-[Citric-xH-2H2O]−x+2 + 2H2O
(1)

The free radical scavenger properties were studied by analyzing the
single electron transfer (SET) mechanism. Vertical ionization energy (I)
and vertical electron affinity (A) were obtained from single point cal-
culations of the corresponding cationic and anionic molecules, using
the optimized structure of the neutrals. Same level of theory was used in
all computations. The Full Electron Donor-Acceptor Map (FEDAM),
defined previously [43,44], is a useful graphic tool. In this map, I and A
(Fig. 1) are plotted and allow classifying substances as either donors or
acceptors of electrons. Electrons are transfer from good donor systems
(down to the left of the map) to good electron acceptor systems (up to
the right of the map).

Citric acid (neutral and deprotonated) may act as pro-oxidant pro-
ducing Cu(I) that is one of the important reactants of the Haber-Weiss
reactions. Therefore, it is important to analyze the following reaction:

[Citric-xH]−x + [Cu(H2O)4]2+ → [Citric-xH]−x−1 + [Cu(H2O)4]1+

(2)

3. Results and discussion

As pointed out in the introduction, citric acid is a weak organic acid.
The pKa values are 3.1, 4.8 and 6.4 (see Fig. 2). This means that, under
physiological conditions (pH equal 7.4), citric acid is deprotonated in a
high percentage. For this reason, in this study we investigated all pos-
sible structures, neutral and deprotonated. The optimized geometries
are reported in Fig. 2 and, as expected, they are quite similar.

To analyze the metal chelation process, copper atom was bonded at
several positions of the citric acid (neutral and deprotonated). Gibbs
free energies were obtained according to Eq. (1). Fig. 3 reports the most

stable structures of the compounds with copper and the corresponding
values of ΔG. Bond distances are similar and all the reactions are ex-
ergonic, indicating that they are thermodynamically viable. The most
exergonic reaction is for [Citric-3H]−3. In all cases, there is an im-
portant electrostatic component in the interaction of copper atom with
citric acid. For this reason, when the global negative charge of the citric
acid increases, a raise of the electrostatic interaction with positive
copper atoms is produced. In fact, as the global negative charge of the
citric acid increases, the exergonicity also augments.

The second step to recognize a good metal scavenger is to know the
efficiency of the molecule as free radical scavenger. To investigate this,
the SET mechanism was used for citric acid (neutral and anionics).
Fig. 4 reports the FEDAM for citric acid species and %OH. As expected,
[Citric-3H]−3 is the best electron donor. Citric acid species are down to
the left, with respect to %OH. Therefore, they are able to give an electron
to the free radical and consequently they are good free radical sca-
vengers.

Metal chelation is viable for citric acid species and also these species
are efficient free radical scavengers. Therefore, it is possible to conclude
that citric acid is promising for copper chelation therapy (metal sca-
venger).

To analyze OIL-2 mechanism it is necessary to investigate the ca-
pacity of the chelates to act as %OH scavengers. To answer this question
we analyzed the SET mechanism with the results of Fig. 4. Chelate
species are down to the left at the FEDAM, whilst %OH is up to the right.
Therefore copper compounds can also donate an electron to the free
radical but they are better electron acceptors and worse electron donors
than the citric acid species without copper. Citric acid species are better
free radical scavengers but chelate compounds with copper can also act
as %OH scavenger.

To analyze the OIL-1 mechanism, the reduction of the Cu(II) che-
lates was investigated. Two possible reductants were considered: (i) the
superoxide radical anion (O2

%−1) and the ascorbate anion (Asc−1).
O2

%− is involved in the first step of the Haber–Weiss recombination and
Asc−1 is frequently used mixed with copper to induce oxidative con-
ditions in vitro. The Gibbs free energies (ΔG) for the reactions of these
two reductants with the Cu(II) chelates (having citric acid species as
ligands) are reported in Table 1. The ΔG values for the reactions with
“free” copper are also provided in this table, as references.

Free Cu(II) ions were modeled coordinated to water molecules be-
cause this model is more adequate to represent this species, under
physiological conditions, than the naked ion. It was modeled in an al-
most square-planar four coordinate geometry, since it has been reported
to be the most likely arrangement for this ion in aqueous solution
[45,46] For consistency purposes, the hydrated Cu(I) ions were mod-
eled with four water molecules albeit in this case the linear two-co-
ordinate configuration is preferred [47–49]. Thus, in this model, Cu(I)
is actually coordinated to two water molecules, while the other two are
solvating the system.

It was found that chelation by the citric acid species fully turn off
the Cu(II) reduction by Asc−1, since the corresponding reactions are all
endergonic. These results suggest that citric acid will behave as an ef-
ficient antioxidant, via OIL-1, in experiments using Cu/Asc−1 mixture
to induce oxidation. On the contrary, the Cu(II) reduction by O2

%−1 is
predicted to be only partially inhibited, because in this case the cor-
responding reactions were found to be less exergonic than for free
copper, but still thermochemically viable. Therefore, citric acid might
downgrade the %OH production in biological systems, but the inhibition
will not be complete. These results indicate that the efficiency of citric
acid as an OIL-1 antioxidant would depend on the strength of the re-
ductant. Moreover, since O2

%−1 is expected to be the most likely re-
ductant under physiological conditions, in biological systems citric acid
would be more efficient as an OIL-2 antioxidant.

In the presence of copper, citric acid (neutral and de-protonated)
A
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Fig. 1. Full Electron Donor-Acceptor Map.
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may act as pro-oxidant producing Cu(I), one of the reactants of Haber-
Weiss reactions. If this were the case, then citric acid should not be
considered as a good metal scavenger in biological systems. We in-
vestigate the Cu(II) reducing ability of citric acid (neutral and de-pro-
tonated) and Table 2 reports the correspondent Gibbs free energies. All
the reactions are endergonic and therefore they are not thermo-
dynamically viable. With these results, it is possible to say that citric
acid is not able to reduce Cu(II), thus it is not a pro-oxidant and it will
not promote %OH production via the Haber-Weiss reactions.

4. Conclusions

According with all the results presented here, the best copper sca-
venger is [Citric-3H]−3. This is a promising result since most citric acid
under physiological conditions will be present in this form.

Citric acid will behave as an efficient antioxidant, via OIL-1, in
experiments using Cu/Asc−1 mixture to induce oxidation. The Cu(II)
reduction by O2

%−1 will be only partially inhibited, since the corre-
sponding reactions are less exergonic than for free copper. Therefore,
citric acid might downgrade the %OH production in biological systems.

Moreover, citric acid will not reduce Cu(II), thus it is not a pro-
oxidant and it will not promote %OH production via the Haber-Weiss
reactions.

Metal chelation is viable for citric acid species and also these species
are efficient free radical scavengers. Therefore, it is possible to conclude

that citric acid is promising for copper chelation therapy (metal sca-
venger). In this sense, citric acid is not only safe as food additive but
also it may improve the quality of the food.
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Fig. 3. Most stable structures of compounds with copper and citric acid (neutral
and deprotonated). Mulliken atomic charges are reported in italics.

Table 1
Gibbs free energies (kcal/mol, at 298.15 K) of the reactions of Cu(II) – citric
acid with the superoxide radical anion (O2

%−1) and the ascorbate anion
(Asc−1) as reductants.

O2
%−1 Asc−1

[Cu(H2O)4]+2 −26.2 −2.2
[Cu-Citric]+2 2H2O −18.1 4.5
[Cu-[Citric-H]]+1 2H2O −11.4 11.2
[Cu-[Citric-2H]]0 2H2O −10.2 12.4
[Cu-[Citric-3H]]−1 2H2O −5.4 17.2
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