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Abstract. In this article, we report a distinct convolution theorem developed for the Kubo-Greenwood
formula in Labyrinth tiling by transforming the two-dimensional lattice into a set of independent chains with
rescaled Hamiltonians. Such transformation leads to an analytical solution of the direct-current conductance
spectra, where quantized steps with height of 2g0 are found in Labyrinth tiling with periodic order along
the applied electric field direction, in contrast to the step height of g0 observed in the corresponding square
lattices, being g0 the conductance quantum. When this convolution theorem is combined with the real-
space renormalization method, we are able to address in non-perturbative way the electronic transport in
macroscopic aperiodic Labyrinth tiling based on generalized Fibonacci chains. Furthermore, we analytically
demonstrate the existence of ballistic transport states in aperiodic Labyrinth tiling. This finding suggests
that the periodicity should not be a necessary condition for the single-electron ballistic transport even in
multidimensional fully non-periodic lattices.

1 Introduction

The search for a simple and direct relationship between
atomic scale arrangement and macroscopic properties of
a material constitutes a principal task of the materi-
als science. For example, the Bloch theorem establishes
extended electronic wavefunctions and then a ballistic
conduction if the atoms of a crystal are periodically
ordered [1]. At the other extreme, for an amorphous
solid with randomly arranged atoms, the scaling analysis
indicates only exponentially localized eigenstates in one-
dimensional (1D) and two-dimensional (2D) systems [2].
There is a wide range of structural disorders in between,
such as the quasicrystals discovered by D. Shechtman in
1984 [3], which possess a long range rotational order with-
out periodicity. Based on the Lebesgue’s decomposition
theorem, aperiodic systems can be classified through its
lattice Fourier transform spectrum in three different types:
pure-point, as revealed by the electron diffraction pattern
of quasicrystals [3], singular-continuous and absolutely-
continuous spectra [4,5]. It has been demonstrated that
the Fourier transform spectrum of a periodic or aperiodic
binary lattice is discrete, if the eigenvalues of its substi-
tutional matrix obtained from the irreducible Pisot poly-
nomial satisfy the Pisot-Vijayaraghavan (PV) condition
[6,7]. Moreover, within the tight-binding formalism, the
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electronic wavefunctions of 1D quasiperiodic systems have
been proven to be critical [8] with power law localization
[9] and the corresponding eigenvalue spectrum is a Cantor
set with zero-Lebesgue measure [10]. In general, this for-
malism has the advantage of being simple and capable
to reproduce experimental data, since many-body effects
are partially considered through its semi-empirical param-
eters. Furthermore, such simplicity permits isolate the
structural disorder effects on the electronic transport in
quasiperiodic systems. Hence, the tight-binding approach
is nowadays being extensively used for the understanding
of new physical phenomena occurred in a wide range of
aperiodic systems [4,11,12].

In general, eigenmodes in 1D aperiodic systems may
exhibit a localization-delocalization transition, but such
transition is not guaranteed in higher dimensional ones
[13], whose spectral and transport properties remain as
unsolved problems. In the past, most studies of 2D aperi-
odic systems were carried out for thousands of atoms [14]
or through the perturbation theory [15,16]. However, the
former is unsuitable to analyze the long range quasiperi-
odic effects, while the latter cannot address high contrast
aperiodic systems. For the case of tight-binding model, the
off-diagonal aperiodic Hamiltonian of cubic-type lattices
is separable [17] and may be written as a sum of Euclidean
products of 1D systems [18].

Beyond these cubic-type multidimensional aperiodic
lattices, an interesting alternative could be the connection
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of second neighbors in the square Fibonacci lattice, called
Labyrinth tiling [19], i.e., a 2D rhombic lattice with non-
constant bond lengths built by the Euclidean product of
two 1D aperiodic ones [20–22]. In this article, we report
a new convolution theorem for separable tight-binding
Hamiltonians expressed as a product of individual ones, in
contrast to the previous one developed for Hamiltonians
expressed as a sum of them [18]. This convolution theo-
rem combined with the real-space renormalization method
allows to analyze the electronic transport in macroscopic
multidimensional Labyrinth tiling.

This paper is organized as follows: in Section 2 we intro-
duce 2D Labyrinth tiling and its tight-binding Hamilto-
nian through the product of those from two linear chains.
We further demonstrate in Section 3 a distinct convolution
theorem for the density of states (DOS ) and a detailed
proof of such theorem for the Kubo-Greenwood formula
is given in Appendix A. The obtained DOS of silver-mean
Labyrinth tiling is compared with those reported in the lit-
erature. In Section 4, we study the electrical conductance
of 2D Labyrinth tiling based on generalized Fibonacci
(GF) chains by combining the convolution theorem with a
previously developed real-space renormalization method.
In addition, an unusual ballistic conduction state is found
at the center of several conductance spectra and its
existence in such multidimensional Labyrinth tilings is
analytically proven in Section 5. Finally, some conclusive
remarks are presented in Section 6.

2 Labyrinth tiling

A 2D aperiodic Labyrinth tiling can be obtained from the
Euclidean product of two 1D aperiodic chains [23], such
as the Fibonacci one constructed by using two unequal
building blocks A and B through the substitution rule of
A → AB and B → A. A GF lattice may be obtained by
following a general substitution rule given by A→ AmBn

and B → A where m,n ∈ Z+ [24,25]. There are several
isomers for each (m,n)-type GF lattice and they obey the
rules A → AmBn, A → Am−1BABn−1, . . . , A → BnAm.
These isomers possess almost the same DOS , but different
transport properties [26]. Moreover, the GF lattices with
m > 1 and n = 1 are called precious means, whose substi-
tution matrix satisfies the PV conditions. Thus, they are
quasiperiodic systems [27]. For metallic means with m = 1
and n > 1, these conditions are not fulfilled and then their
lattice Fourier transform spectrum does not consist of pure
points since they are not quasiperiodic lattices [7].

In order to study the electronic transport in aperiodic
lattices, we start from a 1D nearest-neighbor single-band
tight-binding Hamiltonian (Ĥ1D), which can be written as

Ĥ1D =
∑
i

(ti,i+1|i〉〈i+ 1|+ ti,i−1|i〉〈i− 1|) , (1)

where |i〉 represents the Wannier function at atom i
with null self-energy and ti,i±1 are the hopping integrals
between nearest-neighbor sites i and i ± 1, whose values
can be tA or tB ordered following the GF sequences. A

coupling constant,

λ ≡ |t2A − t2B |
/
tAtB , (2)

can be introduced to quantify the disorder strength [28].
From two 1D Hamiltonians of equation (1), it is possible

to construct 2D ones. For example, Ĥ2D
sq = Ĥ1D

x ⊗ Îy +

Îx ⊗ Ĥ1D
y is the Hamiltonian of a square lattice, where Îκ

is the 1D identity operator with κ = x or y. The energy
spectrum of Ĥ2D

sq is given by E2D
sq = E1D

x + E1D
y , being

E1D
κ the energy spectrum of Ĥ1D

κ . This spectrum is an
interval if parameters λx and λy defined in equation (2)
are sufficiently close to zero, and it is a Cantor set of zero
Lebesgue measure if λx and λy are large enough [28].

A more general 2D Hamiltonian, through the Euclidean
product (⊗) between two 1D-Hamiltonians, can be written
as [19]

Ĥ2D =
1

V

(
Ĥ‖ + ε‖I‖

)
⊗
(
Ĥ⊥ + ε⊥I⊥

)

=
1

V

∑
i,k



ε‖ε⊥|i, k〉〈i, k|
+ε⊥ti,i+1|i, k〉〈i+ 1, k|
+ε⊥ti,i−1|i, k〉〈i− 1, k|
+ε‖tk,k+1|i, k〉〈i, k + 1|
+ε‖tk,k−1|i, k〉〈i, k − 1|
+tk,k+1ti,i+1|i, k〉〈i+ 1, k + 1|
+tk,k+1ti,i−1|i, k〉〈i− 1, k + 1|
+tk,k−1ti,i+1|i, k〉〈i+ 1, k − 1|
+tk,k−1ti,i−1|i, k〉〈i− 1, k − 1|


, (3)

where V is an energy scale parameter, Ĥ‖ and Ĥ⊥

are respectively 1D Hamiltonians of equation (1) along
the parallel and perpendicular directions respect to the
applied electric field, ε‖ and ε⊥ are correspondingly the
self-energies of atoms in parallel and perpendicular sub-
space, and |i, k〉 = |i〉|k〉, being |i〉 and |k〉 Wannier
functions in the parallel and perpendicular subspace,
respectively. Hence, the 2D energy spectrum is given by

E2D
α,β =

1

V
(E‖α + ε‖)(E

⊥
β + ε⊥), (4)

where Ĥ2D|α, β〉 = E2D
α,β |α, β〉, Ĥ‖|α〉 = E

‖
α|α〉 and

Ĥ⊥|β〉 = E⊥β |β〉. Therefore, from equations (3) and (4)
we have

1

V

∑
i,k



ε‖tk,k+1|i, k〉〈i, k + 1|
+tk,k+1ti,i+1|i, k〉〈i+ 1, k + 1|
+ε‖tk,k−1|i, k〉〈i, k − 1|
+tk,k−1ti,i−1|i, k〉〈i− 1, k − 1|
+ε⊥ti,i+1|i, k〉〈i+ 1, k|
+tk,k−1ti,i+1|i, k〉〈i+ 1, k − 1|
+ε⊥ti,i−1|i, k〉〈i− 1, k|
+tk,k+1ti,i−1|i, k〉〈i− 1, k + 1|


|α, β〉

=
(E
‖
α + ε‖)(E

⊥
β + ε⊥)− ε‖ε⊥
V

|α, β〉. (5)
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Fig. 1. Labyrinth tiling (green lines), based on a 2D silver mean lattice (gray dashed lines), for (a,a′) AAB, (b,b′) ABA and
(c,c′) BAA isomers with (a–c) odd or (a′–c′) even options. The red thick lines illustrate the scale invariance of Labyrinth tiling.

For the limiting case of ε‖ = ε⊥ = V and V → ∞,
equation (5) reduces to

Ĥ2D
Sq |α, β〉 =

∑
i,k

 tk,k+1|i, k〉〈i, k + 1|
+tk,k−1|i, k〉〈i, k − 1|
+ti,i+1|i, k〉〈i+ 1, k|
+ti,i−1|i, k〉〈i− 1, k|

 |α, β〉
= (E‖α + E⊥β )|α, β〉, (6)

which corresponds to the Schrödinger equation of a square
lattice. On the other hand, for the opposite limiting case
of ε‖ = ε⊥ = 0, equation (5) can be rewritten as [29]

Ĥ2D
Lb |α, β〉 =

1

V

∑
i,k


tk,k+1ti,i+1|i, k〉〈i+ 1, k + 1|
+tk,k−1ti,i−1|i, k〉〈i− 1, k − 1|
+tk,k−1ti,i+1|i, k〉〈i+ 1, k − 1|
+tk,k+1ti,i−1|i, k〉〈i− 1, k + 1|

 |α, β〉
=
E
‖
αE
⊥
β

V
|α, β〉, (7)

which corresponds to the Schrödinger equation of a
Labyrinth tiling, as shown in Figure 1 for the case of
silver-mean sequence along both parallel and perpendicu-
lar directions. The energy spectrum of the Labyrinth tiling
is an interval if parameters λx and λy defined in equation

(2) are sufficiently close to zero, and it is a Cantor set
of zero Lebesgue measure if λx and λy are large enough,
as occurred in the square lattice [30]. From equation (7),
the hopping integral between atoms with Cartesian coor-
dinates (j, k) and (j + 1, k+ 1) in a 2D Labyrinth tiling is
given by

t(j,k)(j+1,k+1) = 〈j, k|Ĥ2D
Lb |j + 1, k + 1〉

=
1

V

∑
l,r

〈j, k|Ĥ‖|l, r〉〈l, r|Ĥ⊥|j + 1, k + 1〉,

=
1

V

(
t(j,k)(j+1,k)t(j+1,k)(j+1,k+1)

+ t(j,k)(j,k+1)t(j,k+1)(j+1,k+1)

)
, (8)

since Ĥ‖ and Ĥ⊥ only consider nearest-neighbor hopping
processes.

Figure 1 shows the scaling property, illustrated by green
thin and red thick lines, of Labyrinth tiling based on the
silver mean sequence (m = 2, n = 1) of generation 4 (gray
dashed lines), for (a–c) odd and (a′–c′) even Labyrinth
tiling corresponding to (a,a′) AAB, (b,b′) ABA and (c,c′)
BAA isomers. This scaling property can be visualized by
using three different 2D building units (O,P,Q) and for a
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silver-mean Labyrinth tiling, they are shown in Figure 2
including their respective 2D substitution rules, which for
a Labyrinth tiling based on (m,n)-type GF can be written
as(

O
P
Q

)
→W

(
O
P
Q

)
=

 m2 n2 2mn
1 0 0
m 0 n

( O
P
Q

)
.

(9)
Eigenvalues (ξ) of the substitution matrix (W) are roots

of

det(W − ξI) =

∣∣∣∣∣∣
m2 − ξ 1 2m

1 −ξ 0
m 0 1− ξ

∣∣∣∣∣∣
= − (ξ + 1)

(
ξ2 −m2ξ − 2ξ + 1

)︸ ︷︷ ︸
irreducible Pisot polynomial

= 0, (10)

which leads to ξ = −1 and ξ± =
(m2 + 2±m

√
m2 + 4)

/
2. In equation (10), p(ξ) =

ξ2 −m2ξ − 2ξ + 1 is an irreducible Pisot polynomial over
the field of integer numbers [31] that satisfies the PV
conditions given by

ξ1 > 1 and |ξl| < 1 for 2 ≤ l ≤ S, (11)

where S is the degree of irreducible polynomial. In other
words, the 2D (m,n)-GF Labyrinth tiling with n = 1 fulfill
the PV conditions and then, they are quasiperiodic lattices
as a consequence of the quasiperiodicity of 1D (m,n)-type
GF chains with n = 1 [28].

3 Convolution theorem for the density
of states in Labyrinth tiling

Many physical properties of solids, such as the DOS ,
electric and thermal conductivities by electrons or by
phonons, as well as infrared and Raman responses, can
be calculated through the Green’s function [32], which
is determined by the Dyson equation given by (z −
Ĥ)G(z) = 1, where z = E + iη is a complex number, E
is the energy of excitation and η → 0+ is the imaginary
part of E [33]. For a 2D Labyrinth tiling described by

Hamiltonian Ĥ2D
Lb in equation (7), whose Green’s function

can be written as

G2D
(r,j)(k,l)(z) =

∑
α,β

〈r | α〉〈α | k〉〈j | β〉〈β | l〉

z − E‖αE⊥β
/
V

= − 1

π
lim

η′→0+

∫
dζ
∑
α

〈r | α〉〈α | k〉

z − E‖αζ
/
V

× Im
[
G⊥j,l(ζ + iη′)

]
, (12)

where |α〉|β〉 is an eigenstate of Ĥ2D
Lb = Ĥ‖ ⊗ Ĥ⊥

/
V sat-

isfying Ĥ‖|α〉 = E
‖
α|α〉 and Ĥ⊥|β〉 = E⊥β |β〉, r and k are

Fig. 2. Schematic representation of the 2D substitution rules
of equation (9) applied to building units O (purple zone),
P (green zone) and Q (yellow zone) for generations (a) two
and (b) three of the silver-mean Labyrinth tiling illustrated in
Figure 1a.

site coordinates along the x -axis, while j and l are site
coordinates along the y-axis. In equation (12), we have
used the following identity [33]

− 1

π
lim

η′→0+
Im
[
G⊥j,l(ζ + iη′)

]
=
∑
β

〈j | β〉〈β | l〉δ(ζ−E⊥β ).

(13)

Let us introduce a rescaled 1D Hamiltonian Ĥε‖ given
by

Ĥε‖|α〉 = εĤ‖|α〉 = εE‖α|α〉 = Eε‖α |α〉, (14)

where Ĥε‖ = εĤ‖, E
ε‖
α = εE

‖
α and ε = ζ/V . In conse-

quence, equation (12) can be rewritten as

G2D
(r,j)(k,l)(z)

= − 1

π
lim

η′→0+

∫
d(εV )G

ε‖
r,k(z)Im

[
G⊥j,l(εV + iη′)

]
, (15)

where G
ε‖
r,k(z) =

∑
α
〈r|α〉〈α|k〉
z−Eε‖α

. In general, the DOS is

related to the Green’s function through [33]

DOS(E) = − 1

π
lim
η→0+

Im
∑
j

Gj,j(E + iη). (16)

Hence, from equation (15) we obtain the convolution
formula for DOS given by

DOS2D(E) =

∫ ∞
−∞

V dεDOS‖ε (E)DOS⊥(εV ), (17)

where DOS
‖
ε (E) = − 1

π lim
η→0+

Im
∑
j G

ε‖
j,j(E + iη).
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Fig. 3. Density of states (DOS) versus the chemical potential
(µ) for (a–c) square and (d–f) Labyrinth tilings with a (2,1)-
type GF order along both directions, denoted by Q–Q, and
hopping integrals tA = t and tB indicated in each figure. For
the Labyrinth case, the DOS are compared with those reported
in reference [29], whose spectra are illustrated in (d–f) with a
shift ∆ in the vertical direction.

Using equations (13), (15) and (16), the 2D DOS can
also be expressed as

DOS2D(E) =
−1

π

∑
β

lim
η→0+

Im

∫
V dεGε‖r,r(z)

×
∑
j

〈β | j〉〈j | β〉δ(εV − E⊥β )

=
∑
β

DOS
‖
E⊥β /V

(E), (18)

where identities
∑
j |j〉〈j| = 1 and 〈β | β〉 = 1 were used.

The DOS of Labyrinth tiling with hopping integrals
ordered following (m,n)-type GF sequences can be calcu-
lated using equations (17)–(18) and the renormalization
procedure developed for GF chains of reference [26],
while for corresponding square lattices this renormaliza-
tion method plus convolution formulas of reference [18]
are used. In Figure 3, the DOS is plotted as function
of the chemical potential (µ) for (a–c) square and (d–
f) Labyrinth lattices with a (2,1)-type GF quasiperiodic
order along both longitudinal and transversal directions,
denoted by Q–Q, containing 19 602 atoms in each direc-
tion. Both lattices along the parallel direction are con-
nected at their ends to two semi-infinite periodic leads
with null self-energies and hopping integrals t. An imag-
inary part of the energy η = 10−4|t|, hopping integrals
of (a,d) tB = 0.8t, (b,e) tB = 0.5t, (c,f) tB = 0.3t, and
(a–f) tA = t are used. In addition, the energy scale
parameter is taken as V = |t| along the rest of this
article. In Figures 3d–3f, magenta lines illustrate the
corresponding DOS reported in reference [29], whose

spectra were shifted by ∆ and scaled by a factor of
(d) 1, (e) 2.808 and (f) 8.657 obtained from the condi-
tion

∫∞
−∞DOS(E)dE = 1. Note the excellent coincidence

between both DOS spectra in each of Figures 3d–3f.
Notice also the well-defined energy gaps and smaller band
width in Figures 3d–3f for Labyrinth tiling in comparison
with those of Figures 3a–3c, in spite of a constant coor-
dination number of four for both square and Labyrinth
lattices. It is worth mentioning that for the periodic case
(tA = tB = t) both lattices have the same DOS and
different conductance spectra, shown as gray spheres in
Figures 4–7.

4 Electrical conductance

In this section, we analyze the electronic transport by
means of the Kubo-Greenwood formula given by [33]

σxx(µ, ω, T ) =
2e2~
Ωπm2

1

(2i)2

∫ ∞
−∞

dE
f(E)− f(E + ~ω)

~ω

× Tr
[
p̂xG̃(E + ~ω)p̂xG̃(E)

]
, (19)

where Ω is the system volume, p̂x = (im/~)[Ĥ, x̂]
is the projection of the momentum operator along
the applied electrical field, G̃(E) = G+(E) − G−(E)
is the discontinuity of Green’s function, and f(E) =

{1 + exp [(E − µ)/kBT ]}−1 is the Fermi-Dirac distribu-
tion with the chemical potential µ and temperature T.

Utilizing the convolution theorem demonstrated in
Appendix A for the Kubo-Greenwood formula in
Labyrinth tiling, whose conductivity (σLbxx) can be
written as

σLbxx(µ, ω, T ) =
1

Ω⊥

∫ ∞
−∞

V dεσ‖ε (µ, ω, T )DOS⊥(εV ), (20)

or

σLbxx(µ, ω, T ) =
1

Ω⊥

∑
β

σ
‖
E⊥β /V

(µ, ω, T ), (21)

where

σ‖ε (µ, ω, T ) =
2e2~
Ω‖πm2

1

(2i)2

∫ ∞
−∞

dE
f(E)− f(E + ~ω)

~ω

× Tr
[
p̂ε‖x G̃

ε‖(E + ~ω)p̂ε‖x G̃
ε‖(E)

]
, (22)

with p̂
ε‖
x = εp̂

‖
x and G̃ε‖(z) = Gε+(z) − Gε−(z), being

Gε±(z) =
∑
α |α〉〈α|

/
(E ± iη − εE‖α).

Equations (20) and (21) are the new convolution formu-
las for the Labyrinth tiling, similar to those developed for
cubically structured lattices in reference [18]. In Figure 4,
the electrical conductance (g) in units of g0 = 2e2

/
h as

a function of chemical potential (µ) for (a–c) square and
(d–f) Labyrinth lattices is presented. In these lattices, GF
quasiperiodic sequences with m = 1, 2, or 3 and n = 1

https://epjb.epj.org/
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Fig. 4. Electrical conductance (g) versus the chemical poten-
tial (µ) for quasiperiodic (a–c) square and (d–f) Labyrinth
lattices based on GF chains with n = 1 and (a,d) m = 1, (b,e)
m = 2, (c,f) m = 3 along both directions (Q–Q), whose hop-
ping integrals are tA = (

√
5− 1)t/2 and tB = t, in comparison

with that of the corresponding periodic square and Labyrinth
lattices (gray spheres).

(indicated in each figure) were used in both longitudinal
and transversal directions (Q–Q), whose lengths are spec-
ified in Table 1. The hopping integrals of these lattices are
tA = (

√
5− 1)t

/
2 and tB = t with an imaginary part of

the energy of η = 10−15|t|.
In Figures 4a–4f, the electrical conductance spectra of

corresponding periodic square and Labyrinth lattices are
shown by gray spheres, where the former spectrum is
obtained from [34]

gSqxx(µ, 0, 0)

g0
=

Ω⊥
g0Ω‖

σSqxx(µ, 0, 0) =
Ω⊥
π

cos−1
(
|µ| − 2|t|

2|t|

)
,

(23)
while the latter for periodic Labyrinth tiling can be ana-
lytically calculated from the convolution theorem given by
equation (20) and analytical expressions of

σ‖(µ, 0, 0) =
e2Ω‖θ(2|t| − |µ|)

π~

and DOS⊥(ε) = Ω⊥
θ(2|t| − |ε|)
π
√

4t2 − ε2
, (24)

for periodic chains, being θ(ξ) =

{
0, if ξ < 0
1, if ξ ≥ 0

. Hence,

equations (20) and (24) lead to

gLbxx(µ, 0, 0)

g0
=
Ω⊥σ

Lb
xx(µ, 0, 0)

g0Ω‖

=
Ω⊥
π

(∫ −|µ|/2
−2|t|

dε√
4t2 − ε2

+

∫ 2|t|

|µ|/2|

dε√
4t2 − ε2

)

=
2Ω⊥
π

cos−1
(
|µ|
4|t|

)
. (25)

Note in Figures 4d–4f the transparent states at µ = 0,
whose ballistic electrical conductance scales with the sys-
tem width, for Labyrinth tiling with quasiperiodic order in
both longitudinal and transversal directions, denoted by
Q–Q. In fact, this transparent state is present in all mul-
tidimensional Labyrinth tiling with quasiperiodic order
(n = 1) in each direction, as a consequence of the trans-
parent state at µ = 0 in GF quasiperiodic chains [26].
An analytical proof of this fact is given in Section 5.
Also, Figures 4a–4c show the electrical conductance spec-
tra of square lattices based on the same GF quasiperiodic
sequences as in Labyrinth tiling of Figures 4d–4f. Notice
in Figures 4a–4c the absence of transparent states and
larger band widths compared to those of the correspond-
ing Labyrinth tiling, in which the magnitudes of hopping
integrals given by equation (8) are generally smaller than
those of square lattices since |tA| < |t|.

Figure 5 shows the electrical conductance (g) as func-
tion of the chemical potential (µ) and system length (N‖)
along the applied electric field for (a) square and (b)
Labyrinth lattices with N⊥ = 121 394 for m = n = 1 and
the same Hamiltonian parameters as in Figure 4. Notice
that g generally decreases with the growth of N‖ for both
square and Labyrinth lattices. Observe in Figure 5b the
appearance of transparent states at µ = 0 for every 6
generations of the Labyrinth tiling, as occurred in the
Fibonacci chain [26], in contrast to their absence in the
corresponding square lattice.

Figure 6 shows the electrical conductance (g) versus
the chemical potential (µ) for aperiodic (a–c) square and
(d–f) Labyrinth lattices with n = 2 and (a,d) m = 1,
(b,e) m = 2, and (c,f) m = 3 along both longitudinal
and transversal directions (A–A), using the same Hamilto-
nian parameters as in Figure 4. The sizes of these lattices
are stated in Table 1. Notice the linear scale plot of g in
Figure 6, in contrast to the logarithmic one in Figure 4,
which means that the g of double aperiodic lattices with
n = 2 are generally larger than those of quasiperiodic
ones with n = 1, except µ = 0 for the Labyrinth tiling.
Observe in Figure 6e the transparent state at µ = 0 of the
Labyrinth tiling with m = n = 2, and a higher g around
µ = 0 of Labyrinth systems in comparison with those of
aperiodic square lattices.

Figure 7 illustrates spectra of g versus µ for the
same (a–c) square and (d–f) Labyrinth lattices as in
Figure 4, except for a periodic order with tA = tB = t
along the applied electric field direction. Such lattices
are denoted by P–Q ones. Observe in their insets, Fig-
ures 7a′–7f′, the quantized steps, whose height is g0 for
square lattices and 2g0 for Labyrinth tiling. The former
is originated from the convolution formula for square lat-

tices given by [18] σ2D(µ, 0, 0) =
∑
β σ
‖(µ− Eβ , 0, 0)

/
Ω⊥

and the non-degeneracy of 1D eigenvalues (Eβ), while
the latter is arisen from the convolution theorem (21)
for Labyrinth tiling joined with σ‖(E, 0, 0) = σ‖(−E, 0, 0)
and the mirror symmetry of non-degenerated 1D eigenval-
ues (Eβ = −Eβ′) with respect to zero in the perpendicular
subspace, due to bipartite lattices along both directions.
This double degeneracy of the Labyrinth tiling has been
discussed in reference [29]. It is worth mentioning that
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Table 1. Number of atoms in longitudinal and transversal directions of both square and Labyrinth lattices based on
(m,n)-type GF chains of generation l.

n = 1, Quasiperiodic order (Q) n = 2, Aperiodic order (A)
Longitudinal (‖) Transversal (⊥) Longitudinal (‖) Transversal (⊥)

m = 1 433 494 438 for l = 42 121 394 for l = 25 178 956 972 for l = 28 174 764 for l = 18
m = 2 131 836 324 for l = 22 114 244 for l = 14 268 377 089 for l = 20 236 225 for l = 13
m = 3 790 171 310 for l = 18 184 319 for l = 11 253 841 390 for l = 16 124 374 for l = 10

Fig. 5. Electrical conductance (g) as function of the system length (N‖) and chemical potential (µ) for (a) square and (b)
Labyrinth lattices based on GF chains with m = n = 1, N⊥ = 121 394 and the same Hamiltonian parameters as in Figure 4.

Fig. 6. Electrical conductance (g) as function of the chemical
potential (µ) for aperiodic (a–c) square and (d–f) Labyrinth
lattices with n = 2 and (a,d) m = 1, (b,e) m = 2, (c,f) m =
3, using the same Hamiltonian parameters of Figure 4 and
comparing with the g of periodic square and Labyrinth lattices
(gray spheres).

these quantized heights are invariant with the change of
Hamiltonian parameters. On the other hand, the inte-
gral

∫∞
−∞ g(µ, 0, 0)dµ of square lattice spectra shown in

Figures 7a–7c can be analytically calculated by consid-
ering that each ballistic conducting channel provides a
constant area of 4g0|t| regardless the value of Eβ and
the total number of channels is the amount of atoms
in the perpendicular subspace. Hence, the integrals of
Figures 7a–7c for both P–P (gray spheres) and P–Q
(lines) square lattices are 4N⊥g0|t|. For P–P Labyrinth

Fig. 7. Electrical conductance (g) versus the chemical poten-
tial (µ) for (a–c) square and (d–f) Labyrinth lattices with
periodic-quasiperiodic (P–Q) orders along the longitudinal-
transversal directions with respect to the applied electrical
field. These lattices are built from GF sequences with n = 1,
m = 1, 2, or 3 and hopping integrals tA = tB = t along the
periodic direction, while tB = t and tA = (

√
5− 1)t/2 along

the transversal one.

tiling, whose conductance spectra are represented by
gray spheres in Figures 7d–7f, the spectrum integral
can be analytically performed by using equation (25) as∫∞
−∞ g(µ, 0, 0)dµ = 16N⊥g0|t|/π. Now, for P–Q Labyrinth

tiling in Figures 7d–7f, the conductance spectrum inte-
grals result in 4g0

∑
β |Eβ |. In addition, given that the
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Fig. 8. Electrical conductance (g) as function of the chemi-
cal potential (µ) for square and Labyrinth lattices base on GF
sequences with n = 2 and m = 1, 2, or 3. The hopping integrals
are tA = t and tB = t along the periodic (P) longitudinal direc-
tion, while tA = (

√
5− 1)t/2 and tB = t in the quasiperiodic

(Q) perpendicular subspace.

energy spectrum Eβ of a Fibonacci chain with m = 1 and
n = 1 constitutes a Cantor set [11], self-similar conduc-
tance spectra are found in Figures 7a and 7d for both
P–Q square and Labyrinth lattices, because their quan-
tum steps (jumps) are respectively located at Eβ ± 2|t|
and at ±2Eβ .

Figure 8 shows the electrical conductance (g) spectra of
the same systems as in Figure 7, except for n = 2. Observe
the value of g for P–Q and P–A square lattices, respec-
tively shown in Figures 7a–7c and 8a–8c, exceeds that of
their corresponding P–P square lattices for −2|t| < µ <
2|t|. In contrast, the value of g for P–Q and P–A Labyrinth
tiling, correspondingly illustrated in Figures 7d–7f and
8d–8f, is generally smaller than that of their corresponding
P–P Labyrinth tiling. In addition, notice the large number
of ballistic conducting states with g = N⊥g0 around µ = 0
in Figures 7a–7c and 8a–8c, respectively for P–Q and P–A
square lattices. The ballistic-state zones for lattices with
n = 1 shown in Figures 7a–7c are wider than those of lat-
tices with n = 2 illustrated in Figures 8a–8c. In contrast,
there is a single transparent state for Labyrinth tiling at
µ = 0, as occurred in P–P square and Labyrinth lattices.

In Figure 9, we present the variation of ballistic-state
zone width (µR − µL) versus the hopping integral ratio
(tA/tB) for P–Q and P–A square lattices respectively
based on the GF sequences of n = 1 and n = 2, where
µR and µL are respectively the right and left extreme
chemical potential values of the ballistic-state zone. Notice
that all the zone widths tend to zero when tA/tB → 1,
converging to the unique ballistic state of P–P square
lattice. Also, for a given tA/tB , the zone width grows
with m and diminishes when n increases. For tA/tB = 0,
all these square lattices become individual ballistic chan-
nels, except those connected by tB in the perpendicular
subspace, i.e., the resulting belts have a width of n + 1

Fig. 9. Ballistic-state zone width (µR − µL) versus the hop-
ping integral ratio (tA/tB) for P–Q and P–A square lattices
respectively based on GF chains with n = 1 and n = 2, for
m = 1, 2, or 3, whose labels are indicated in the figure.

interconnected channels for a square lattice based on the
(m,n)-type GF sequence. The eigenvalues (Eβ) obtained
from the perpendicular subspace of these belts determine
the ballistic-state zone width, because the ballistic con-
duction of a square lattice at a given energy requires the
ballistic transport in all individual channels and belts at
this energy, i.e., the intersection of all their ballistic-state
zones. For example, Eβ = ±t for n = 1 and Eβ = 0,±t

√
2

for n = 2, respectively lead to ballistic-state zone widths of
µR − µL = 2|t| and µR − µL = 2(2−

√
2)|t|, because such

zone width (µR−µL) can be obtained from the overlap of
ballistic conducting bands centered in each Eβ for a given
belt and a band width of 4|t|.

5 Ballistic states in multidimensional
Labyrinth tiling

In Figures 4d–4f, we observe a central state at µ = 0 with
ballistic signatures for Q–Q Labyrinth tiling. Actually,
there is a central ballistic state every six generations for a
Q–Q Labyrinth tiling based on the Fibonacci sequence
with m = n = 1, as illustrated in Figure 5b. In this
section, we present an analytical proof that this central
state is truly ballistic. It would be worth emphasizing
the absence of this central ballistic state in Q–Q square
lattices.

Within the Landauer formalism, the 1D electrical con-
ductivity is given by [35]

σ1D(µ) = σPT(µ), (26)

where σP = Ω‖g0 is the electrical conductivity of periodic
chains with a system length of Ω‖ = (N‖ − 1)a and T(µ)
is the transmittance given by [36]

T(µ) =
4− (µ/t)2

[τ21−τ12+(τ22−τ11)µ/2t]2+(τ22+τ11)2
(
1−µ2

/
4t2
) ,

(27)
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Table 2. Resulting transfer matrix for (m,n)-type GF chains of generation k.

τ m even, n even m even, n odd m odd, n even m odd, n odd

k = 2 (−1)
m+n

2

(
0 −1
1 0

)
(−1)

m+n+1
2

(
1 0
0 1

)
(−1)

m+n+1
2

(
γ 0
0 γ−1

)
(−1)

m+n
2

(
0 −γ−1

γ 0

)
k = 3 (−1)

n
2

(
0 −1
1 0

)
(−1)

m+n+1
2

(
γ 0
0 γ−1

) (
−γ 0
0 −γ−1

)
(−1)

m−1
2

(
γm+1 0

0 γ−(m+1)

)
k = 4

(
0 −1
1 0

) (
−1 0
0 −1

)
(−1)

m+n+1
2

(
γ 0
0 γ−1

)
(−1)

m+n
2

(
γm−n+1 0

0 γ−(m−n+1)

)
k = 5

(
0 −1
1 0

) (
−γ 0
0 −γ−1

) (
−γ 0
0 −γ−1

)
(−1)

m−1
2

(
0 −γn
γ−n 0

)
k = 6

(
0 −1
1 0

)
(−1)

m+n+1
2

(
1 0
0 1

)
(−1)

m+n+1
2

(
γ 0
0 γ−1

) (
−γ(m+1)(1−n) 0

0 −γ(m+1)(n−1)

)
k = 7

(
0 −1
1 0

)
(−1)

m+n+1
2

(
γ 0
0 γ−1

) (
−γ 0
0 −γ−1

) (
−γ(m+1)(1−n)+n2

0

0 −γ(m+1)(n−1)−n2

)

k = 8

(
0 −1
1 0

) (
−1 0
0 −1

)
(−1)

m+n+1
2

(
γ 0
0 γ−1

)
(−1)

m+n
2

(
0 −γ−n

2

γn
2

0

)

k = 9

(
0 −1
1 0

) (
−γ 0
0 −γ−1

) (
−γ 0
0 −γ−1

)
(−1)

m−1
2

(
γ(m+1)(1−n+n2) 0

0 γ(m+1)(n−1−n2)

)

being τij =
(∏N‖

s=1 Ms

)
ij

elements of the resulting matrix

(τ) obtained from the product of individual transfer matri-
ces. Each of these transfer matrices is determined by
the stationary Schrödinger equation for Hamiltonian (1)
through(

cs+1

cs

)
= Ms

(
cs
cs−1

)
=

(
µ/ts,s+1 −ts,s−1/ts,s+1

1 0

)(
cs
cs−1

)
. (28)

For a d -dimensional Labyrinth tiling, the electrical con-
ductivity (σd−Dxx ) can be calculated by means of the new
convolution theorem (see Appendix A) for Labyrinth tiling
given by

σd−Dxx (µ, ω, T ) =
1

Ω⊥

∑
β

σ
‖
E⊥β /V

(µ, ω, T ), (29)

where σ
‖
E⊥β /V

(µ, ω, T ) is the rescaled electrical conduc-

tivity of the parallel subspace along the applied electric
field given in equation (22) and E⊥β are the eigenval-

ues of (d − 1)-dimensional sub-lattice of volume Ω⊥ in
the perpendicular subspace. For the case of direct cur-
rent (DC), this rescaled 1D conductivity is related to the
transmittance T(µ) through equation (26) and T(µ) is
invariant to the rescale procedure when µ = 0, since the
rescaling Ĥε‖ = εĤ‖ leaves equation (28) unchanged for
µ = 0. In consequence, the ballistic state with T(µ =
0) = 1 in parallel sub-lattice leads to a ballistic one in
multi-dimensional Labyrinth tiling.

In order to prove the existence of a ballistic state at
µ = 0 in the parallel sub-lattice based on GF sequences,
in Table 2 we present the resulting transfer matrices (τ)

for the first eight generations of (m,n)-type GF chains at
µ = 0, where γ = tA/tB .

The resulting transfer matrices shown in Table 2 can
be summarized as follows. When m and n are both even
numbers, from equation (27) we have T(µ = 0) = 1 for all
generations. For the case where m is even and n is odd,
the transfer matrix takes the form of

τ =

[
θ

(⌊
k

2

⌋)
(−1)

(m+n+1)/2 − f
(⌊

k

2

⌋)]
×
(
γθ(k) 0

0 γ−θ(k)

)
, (30)

where θ(k) = [1− (−1)k]
/

2 and f(k) = [1 + (−1)k]
/

2.
Hence its transmittance is

T(µ = 0) =
4(

γθ(k) + γ−θ(k)
)2 , (31)

and then, there is a ballistic state when k is an even num-
ber. On the other hand, when m is odd and n is even, the
general resulting transfer matrix can be written as

τ =
[
f (k) (−1)

(m+n+1)/2 − θ (k)
](

γ 0
0 γ−1

)
, (32)

which leads to a transmittance of T(µ = 0) = 4(γ +
γ−1)−2 and in consequence, there is no ballistic state at
µ = 0 for any generation. Finally, when m and n are both
odd numbers, we found

τ = α(k)

(
(1− δa,2)γβ(k) −δa,2γ−(−1)

kn(k−2)/3

δa,2γ
(−1)kn(k−2)/3

(1− δa,2)γ−β(k)

)
,

(33)
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T (µ = 0) =
4

δa,2
[
γ−(−1)kn(k−2)/3 + γ(−1)kn(k−2)/3

]2
+ (1− δa,2)

[
γβ(k) + γ−β(k)

]2 . (34)

where α(k) = [(1 − δb,0)(−1)(m+n)/2 − δb,0]f(k) +

[(1 − δc,0)(−1)(m−1)/2 − δc,0]θ(k), a = kmod 3 ∈ [0, 2],
b = kmod 6 ∈ [0, 5], c = kmod 7 ∈ [0, 6], and

β(k) = (m + 1)
∑bk/3c−1
s=0 (−n)s + δa,1(−n)bk/3c. The

corresponding transmittance is

See equation (34) above

Hence, there are ballistic states at µ = 0 for GF chains
with n = 1 and arbitrary odd numbers of m at k =
6, 12, 18, . . . Examples of these ballistic states in Labyrinth
tiling can be found in Figures 4d–4f and 6e, where numer-
ical results confirm their presence at µ = 0. Furthermore,
Figure 5b verifies its appearance every six generations in
(1,1)-type Labyrinth tiling.

6 Conclusions

A new convolution theorem has been demonstrated for
the DOS and Kubo-Greenwood formula in Labyrinth
tiling. The numerical results of DOS obtained from this
theorem confirm the DOS data of reference [29]. Such
convolution theorem can be visualized as a rotation in
the Hilbert space transforming a Labyrinth tiling to a set
of independent chains with a rescaled 1D Hamiltonian.
Let us introduce a unitary matrix (Û⊥) that diagonal-

izes the Hamiltonian of perpendicular sub-space (Ĥ⊥),

i.e., Û⊥Ĥ⊥Û⊥† = Ĥ⊥diag. Hence, we may build a new

unitary matrix given by Î‖ ⊗ Û⊥, which transforms the

Hamiltonian of Labyrinth tiling (Ĥ‖ ⊗ Ĥ⊥
/
V ) as

(Î‖ ⊗ Û⊥)

(
Ĥ‖ ⊗ Ĥ⊥

V

)
(Î‖ ⊗ Û⊥)†

=
1

V
(Ĥ‖ ⊗ Û⊥Ĥ⊥)(Î‖ ⊗ Û⊥†)

=
1

V
Ĥ‖ ⊗ Ĥ⊥diag. (35)

In other words, the original Labyrinth tiling is mapped
into N⊥ independent linear chains whose Hamiltonians

are rescaled by E⊥β

/
V , where N⊥ and E⊥β are respectively

the number of atoms and eigenvalues in the perpendicular
sub-lattice.

When this convolution theorem is combined with a pre-
viously developed real-space renormalization method for
the Kubo-Greenwood formula in GF chains [26], we are
able to study the electronic transport in macroscopic mul-
tidimensional Labyrinth tiling based on GF sequences. Its
electrical conductance is compared with that of square lat-
tices built from the same GF chains and calculated using

the traditional convolution method for cubically struc-
tured lattices [18]. When a periodic order is placed along
the applied electric field direction, quantized conductance
spectra are observed in both Labyrinth and square lat-
tices, where their step heights are respectively 2g0 and
g0. Moreover, we found a broaden ballistic state region in
the square lattice case, whose extension grows with the
decrease of tA/tB , as illustrated in Figure 9.

On the other hand, we have demonstrated the existence
of a ballistic transport state at zero chemical potential
(µ = 0) in multidimensional Labyrinth tiling based on
(m,n)-type GF sequence along the applied electric field
direction and any disordering lattices in the rest perpen-
dicular directions, when (1) m and n are even numbers
for all generations, (2) m is even, n is odd and the gener-
ation number k is an even number, and (3) m is odd and
n = 1 for every six generations. In summary, the reported
convolution theorem permits an accurate study of the
electronic transport in macroscopic multidimensional ape-
riodic lattices beyond cubically structured ones within the
Kubo-Greenwood plus tight-binding formalism, while the
analytical proof of a DC ballistic transport state in such
lattices could modify the traditional correlation between
periodicity and ballistic conduction. It is important to
stress that this study was carried out within the single
electron approximation and such ballistic transport state
could be verified in a Labyrinth tiling made of low charge-
carrier density materials, for example, semiconductors at
low temperature.

Appendix A: Convolution theorem for
Kubo-Greenwood formula in Labyrinth tiling

The electrical conductivity (σxx) can be calculated by
means of the Kubo-Greenwood formula given by [33]

σxx(µ, ω, T ) =
2e2~
Ωπm2

1

(2i)2

∫ ∞
−∞

dE
f(E)− f(E + ~ω)

~ω

× Tr
[
p̂xG̃(E + ~ω)p̂xG̃(E)

]
, (A.1)

in which the momentum p̂x in 2D Labyrinth tiling with

Hamiltonian Ĥ = Ĥ‖ ⊗ Ĥ⊥
/
V is

p̂2Dx =
im

~

(
Ĥx̂− x̂Ĥ

)
=
im

~V

{
(Ĥ‖ ⊗ Ĥ⊥)(x̂⊗ Î⊥)

− (x̂⊗ Î⊥)(Ĥ‖ ⊗ Ĥ⊥)
}
, (A.2)
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and using the identity of (A ⊗ B)(C ⊗ D) = AC ⊗ BD,
equation (A.2) becomes

p̂2Dx =
im

~V

{
(Ĥ‖x̂− x̂Ĥ‖)⊗ Ĥ⊥Î⊥

}
=

1

V
p̂‖x ⊗ Ĥ⊥,

(A.3)
whose matrix elements are

〈u,w|p̂2Dx |r, j〉 = p‖u,r
∑
β

E⊥β
V
〈w | β〉〈β | j〉, (A.4)

where Ĥ⊥|β〉 = E⊥β |β〉. Hence, using equation (A.4), the

trace in equation (A.1) can be written as

Tr
[
p̂2Dx G̃(z + ~ω)p̂2Dx G̃(z)

]
=
∑
u,w

∑
r,j

∑
k,l

∑
f,s

〈u,w|p̂2Dx |r, j〉〈r, j|G̃(z + ~ω)|k, l〉

×〈k, l|p̂2Dx |f, s〉〈f, s|G̃(z)|u,w〉

=
∑
u,w

∑
r,j

∑
k,l

∑
f,s

∑
γ

p̂‖u,r
E⊥γ
V
〈w | γ〉〈γ | j〉G̃(r,j)(k,l)(z + ~ω)

×
∑
β

p̂
‖
k,f

E⊥β
V
〈l | β〉〈β | s〉G̃(f,s)(u,w)(z), (A.5)

in which G̃(E) = G+(E)−G−(E) is the discontinuity of
Green’s functions and equation (12) leads to

∑
s,β

p̂
‖
k,f

E⊥β
V
〈l | β〉〈β | s〉G̃(f,s)(u,w)(z)

=
∑
s,β

p̂
‖
k,f

E⊥β
V
〈l | β〉〈β | s〉

×
[
G+

(f,s)(u,w)(z)−G
−
(f,s)(u,w)(z)

]
=
∑
s,β

p̂
‖
k,f

E⊥β
V
〈l | β〉〈β | s〉

×

∑
α,γ

〈f | α〉〈α | u〉〈s | γ〉〈γ | w〉

z − E‖αE⊥γ
/
V

−
∑
α,γ

〈f | α〉〈α | u〉〈s | γ〉〈γ | w〉

z∗ − E‖αE⊥γ
/
V


=

∫
V dεp̂

‖
k,fε

∑
α

(
〈f | α〉〈α | u〉
z − εE‖α

− 〈f | α〉〈α | u〉
z∗ − εE‖α

)
×
∑
β

〈l | β〉〈β | w〉δ(εV − E⊥β ). (A.6)

From Hamiltonian Ĥε‖ of equation (14), the rescaled
momentum is given by

p̂ε‖x =
im

~
[x̂, Ĥε‖] = ε

im

~
[x̂, Ĥ‖] = εp̂‖x, (A.7)

and equation (A.6) becomes

∑
s,β

p̂
‖
k,f

E⊥β
V
〈l | β〉〈β | s〉G̃(f,s)(u,w)(z)

=

∫
V dεp̂

ε‖
k,f

∑
α

(
〈f | α〉〈α | u〉
z − Eε‖α

− 〈f | α〉〈α | u〉
z∗ − Eε‖α

)
×
∑
β

〈l | β〉〈β | w〉δ(εV − E⊥β )

=

∫
V dεp̂

ε‖
k,f G̃

ε‖
f,u(z)

∑
β

〈l | β〉〈β | w〉δ(εV − E⊥β ),(A.8)

where G̃ε‖(z) = Gε+(z) − Gε−(z) and Gε±(z) =∑
α |α〉〈α|

/
(E ± iη − Eε‖α ). Hence, the trace of equation

(A.5) can be rewritten as

Tr
[
p̂2Dx G̃(z + ~ω)p̂2Dx G̃(z)

]
=
∑
u,w

∑
r

∑
k,l

∑
f

∫
V dε′p̂ε

′‖
u,rG̃

ε′‖
r,k(z + ~ω)

×
∑
γ

〈w | γ〉〈γ | l〉δ(ε′V − E⊥γ )

×
∫
V dεp̂

ε‖
k,f G̃

ε‖
f,u(z)

∑
β

〈l | β〉〈β | w〉δ(εV − E⊥β )

=

∫
V dε

∑
u,r,k,f

p̂ε‖u,rG̃
ε‖
r,k(z + ~ω)p̂

ε‖
k,f G̃

ε‖
f,u(z)

×
∑
β,w

〈w | β〉〈β | w〉δ(εV − E⊥β )

=

∫
V dεTr

[
p̂ε‖x G̃

ε‖(z + ~ω)p̂ε‖x G̃
ε‖(z)

]
×
∑
β,w

〈w | β〉〈β | w〉δ(εV − E⊥β ), (A.9)

where
∑
l |l〉〈l| = 1 and 〈γ | β〉 = δγ,β were used. There-

fore, the new convolution theorem for Kubo-Greenwood
formula (A.1) in Labyrinth tiling can be expressed as

σLbxx(µ, ω, T ) =
1

Ω⊥

∫ ∞
−∞

V dεσ‖ε (µ, ω, T )DOS⊥(εV )

(A.10)
or

σLbxx(µ, ω, T ) =
1

Ω⊥

∑
β

σ
‖
E⊥β /V

(µ, ω, T ), (A.11)

where σ
‖
ε (µ, ω, T ) = 2e2~

Ω‖πm2
1

(2i)2

∫∞
−∞dE

f(E)−f(E+~ω)
~ω

Tr
[
p̂
ε‖
x G̃ε‖(E + ~ω)p̂

ε‖
x G̃ε‖(E)

]
.
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