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a b s t r a c t 

A nearly monodispersed bubbly flow in a Hele–Shaw type channel was studied, for large but finite 

Reynolds numbers. Experiments were carried out with millimetre-sized Nitrogen bubbles rising through 

water-glycerin mixtures.The velocities, geometry and other flow characteristics were measured by means 

of a high speed camera and an image processing routine, in order to validate this experimental set-up 

with previous results from the literature and shed some light on the cluster formation, timespan and 

breakup mechanisms. The timespan of clusters was estimated by tracing the clusters trajectories. The re- 

sults show that clustering occurs, but the bubble aggregates breakup rapidly due to hydrodynamic effects. 

Scaling arguments were used to obtain an estimate for the lifespan, which is compared to experiments. 

This estimate does not take into account wake effects, so it can be interpreted as a lower bound of clus- 

ters lifespan in an homogeneous bubbly flow. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

If anyone observes a single millimetric air bubble rising through

quiescent water, one notices that its trajectory is a straight line

(for bubbles of diameter smaller than one millimeter); however,

if a pair of such bubbles rise close to each other, their trajectories

follow complicated paths, due to the hydrodynamic interaction be-

tween bubbles and the (initially still) liquid. The case where iner-

tial forces dominate over viscous can be characterized by a large

Reynolds number Re , defined as 

Re = 

u b D eq ρ

μ
(1)

where D eq is the bubble equivalent diameter and u b is the average

bubble rise velocity, ρ and μ are the liquid density and viscosity,

respectively. If surface tension forces are also small compared to

inertial terms, the Weber number is small. This number is defined

by 

 e = 

ρu 

2 
b 
D eq 

σ
(2)

where σ is the surface tension. For the dual limit of large Reynolds

and small Weber numbers, potential flow theory can be used to
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tudy hydrodynamic interactions; Biesheuvel and Van Wijngaar-

en (1982) , Kok (1989) , Kumaran and Koch (1993a,b) analyzed the

otion of two bubbles ascending in quiescent liquid and carried

ut the calculation of the bubble trajectories, which were then

ompared with careful experiments in the laboratory. The actual

rajectories were fairly well predicted by the theory, based on ve-

ocities calculated from a potential and a set of dynamical equa-

ions for the relative velocities and the center of mass of the two

ubbles array. These trajectories are complex, but in general terms,

he bubbles tend to come together and collide along the line per-

endicular to gravity if their initial orientation is not close to a ver-

ical alignment between bubbles centers. One would expect, based

n the aforementioned argument, that bubbles in an initially ho-

ogeneous bubbly flow would tend to form horizontally oriented

lusters. This clustering phenomenon was also predicted by nu-

erical simulations ( Sangani and Didwania, 1993; Smereka, 1993 ),

here potential flow hydrodynamic interactions between (many)

ubbles lead to the formation of horizontal bubble clusters (in ab-

ence of coalescence). 

In the case of a cloud of bubbles, the motion of other bubbles

enerates forces (that depend on the relative positions and veloc-

ties) on each test bubble. Moreover, these forces cause deforma-

ions on the bubbles surfaces, which are also coupled to the liquid.

his interaction between the flow field, forces and deformations is

ard, if not impossible to describe mathematically in a determinis-

ic manner. This situation led ( Van Wijngaarden, 1993 ) to treat the

roblem with stochastic tools, based on a set of simplified equa-

https://doi.org/10.1016/j.ijmultiphaseflow.2018.05.012
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijmulflow
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ions of motion for a pair of bubbles that resulted from the work

f Kok (1989) . These simplifications served the purpose of calcu-

ating an ensemble average for the liquid vertical velocity 〈 u y 〉 : 

 u y 〉 = u b { 1 − 1 . 56 α + O (α2 ) + ... } (3)

here u b is the terminal rise velocity of a free bubble and α is the

as volume fraction in the liquid-gas suspension. Eq. (3) states that

t higher volume fractions the mean bubble velocity decreases.

his result agrees with the actual qualitative behavior of bub-

le suspensions ( Van Wijngaarden and Kapteijn, 1990; Clift et al.,

978; Zenit et al., 2001 ). 

Because of linearity, binary hydrodynamic interactions can also

e used to calculate properties and averaged equations for bubbly

iquids, as was done by Spelt and Sangani (1998) , who determined

verage properties in the limit of large Reynolds and small Weber

umbers, as a function of the volume fraction, such as mean rela-

ive velocity and velocity variance of the bubbles, using numerical

imulations and pair interaction theory. Kok (1993) , also calculated

he mean-square fluctuating velocity in a uniform suspension and

he hydrodynamic diffusivities in a nonuniform one, by perform-

ng an ensemble average over pair interactions. This pair averaging

rocedure is valid for dilute suspensions ( α � 18/ Re ). These statis-

ical techniques are a powerful tool for modeling complex systems

ike multiphase flows. 

Experimental measurements of bubble clusters are difficult be-

ause of the superposition of bubbles when observing a bubble

loud, as well as the cluster breakup due to motion-induced ag-

tation. Nevertheless, some observations of clustering have been

eported in 3D experiments by Zenit et al. (2001) and Figueroa-

spinoza and Zenit (2005) , the latter being able to obtain statisti-

al evidence of horizontal clustering in a thin channel. The problem

ith the 2D viewpoint is that the wall effects are strong, and may

hemselves cause clustering, since when a bubble rises near a wall

ts velocity decreases and a transverse lift force tends to attract it

owards the wall, causing it to bounce ( Figueroa-Espinoza et al.,

008 ), blocking the trailing bubbles motion and (potentially) caus-

ng them to form clusters. A similar effect has been observed

ear a wall in the presence of surfactants ( Takagi et al., 2009 ).

evertheless, if one compares the radial distribution functions

or the experiments in Figueroa-Espinoza and Zenit (2005) with

hose coming from 3D numerical simulations ( Bunner and Tryg-

vason, 2002a ), the qualitative agreement is reasonable. 

Bubble clusters may cause the whole flow field to behave dif-

erently, with respect to a uniformly distributed suspension of bub-

les. Clusters could influence the surrounding flow field ( Salesse

t al., 2002; Van Wijngaarden, 2005 ), introducing enhanced ve-

ocity fluctuations and hydrodynamic interactions that could af-

ect the overall flow structure. The way clusters interact with the

verall flow is not yet well understood, but the importance of cer-

ain flow parameters on their formation and dynamics has already

een identified: the effect of the volume fraction, α, on the added

ass coefficient was first theoretically calculated by Van Wijngaar-

en (1976) for uniformly distributed bubbly flows. Spelt and San-

ani (1998) noted that the added mass coefficient for clustered

ubbly liquids was much greater than the theoretical predictions

or uniformly distributed bubbles. They also showed that the ten-

ency to form aggregates is diminished when the velocity fluctua-

ions in the bubbly liquids are increased. The formation of clusters

as not observed for sufficiently low values of the bubbly turbu-

ent intensity (the ratio between the magnitude of the mean rela-

ive velocity of the bubbles and their root-mean-squared velocity).

f the bubble aggregates contribution to the velocity fluctuations is

mportant, then they may contribute to their own breakup, so it

ould be reasonable to expect their lifespan to be very short. This

as observed by Bunner and Tryggvason (2002a) . 
The reason for focusing our attention on velocity fluctuations

re numerous: whenever an attempt is made to obtain averaged

quations of motion for a bubbly flow, just as in the case of turbu-

ent flows ( Van Wijngaarden, 1997 ), some terms appear, (equiva-

ent to the Reynolds stresses in turbulence models) which depend

n velocity fluctuations. These terms are related to the transport

f momentum due to fluctuations in the velocity of bubbles, col-

isions, and hydrodynamic interactions. Since these averaged equa-

ions are usually developed from the assumption that the veloc-

ty field is the sum of a deterministic part plus a stochastic part,

he structure of the latter is of interest in many situations. There

s a previous work which is closely related to our investigation:

enit et al. (2001) measured the liquid and bubble velocities for a

ubble monodispersed suspension using a dual impedance probe.

hey also calculated a first approximation for the liquid velocity

ariance, using the potential of a single bubble rising through a

iquid at rest. By calculating the squared velocity disturbance on a

ingle bubble, multiplying it by the number density and integrat-

ng over all the space, they obtained: 

 u 

2 
x 〉 = 

1 

5 

αu 

2 
b (4) 

 u 

2 
y 〉 = 

3 

20 

αu 

2 
b (5) 

here u b is the bubble velocity relative to the liquid for a given α.

his calculation was first derived by in Biesheuvel and Van Wijn-

aarden (1984) . 

There are other attempts to evaluate the velocity fluctuations,

n order to obtain more accurate estimates for the quantities

nvolved in calculations for averaged equations. Van Wijngaar-

en (1997) also calculated expressions for the excess turbulent en-

rgy caused by the presence of the bubbles, and also found it to

e dependent on αu 2 
b 
. These quantities have units of energy, and

re usually the only quantities that can be obtained in turbulence

elated experiments. 

More recently, bubble-induced agitation motivated some ex-

erimental investigations ( Martinez-Mercado et al., 2007; Mercado

t al., 2013; Riboux et al., 2009 ) on the properties, scaling and

nteraction between the gas volume fraction, velocity PDF, liq-

id velocity fluctuations and observed energy spectrum, in order

o shed some light on the origin of such enhanced fluctuations;

iboux et al. (2009) carried out an experiment with homogeneous

ubbly flows with different bubble sizes and volume fractions, be-

ng able to obtain bubble mean velocity, liquid velocity fluctua-

ions and Energy Spectrum using optical probes and Laser Doppler

nemometry behind homogeneous bubble swarms. The velocity

uctuations (defined as the vertical velocity variance normalized

ith the single bubble terminal velocity u b ( α → 0)) resulted to

cale as α0.8 , where α is the gas volume fraction. The Energy Spec-

rum follows a power law in terms of the wavelength close to

, consistent with other studies related to bubble induced turbu-

ence ( Lance and Bataille, 1991; Mendez et al., 2013 ). Interestingly,

ater numerical simulations ( Riboux et al., 2008 ) , where the bub-

les were modelled by fixed momentum forces of finite size ran-

omly distributed in an uniform flow (for a volume fraction in the

ange 0.006 < α < 0.04), reproduced the velocity fluctuations and

nergy Spectrum scaling of the experiments, suggesting that the

akes play a very important role in bubble-induced turbulence

 Riboux et al., 2008 ). This set-up of fixed objects (a random dis-

ribution of spheres in a channel) immersed in a uniform flow was

arried out experimentally by Risso et al. (2008) ; this configuration

llowed for both temporal and spacial averaging, which showed

hat Large-Reynolds-number bubble-induced agitation was driven

y (large scale) wake interactions. Interest in explaining theoreti-

ally the aforementioned scaling has motivated some new models
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Fig. 1. Experimental setup. The thin channel was built with two glass plates sepa- 

rated by two glass strips. Nitrogen is injected through the capillary bank to produce 

the bubbles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Fluid properties for different Glycerine percentage in weight 

at 20 °C. Obtained from tabulated values. 

% Weight ρ(kg/m 

3 ) μ(×10 −3 Pas ) 

0 % 9.982 1.005 

15% 1.034 1.53 

30% 1.073 2.5 

50% 1.126 6.0 
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based on potential flow ( Eames et al., 2004; Roig, 2007 ), as well as

stochastic considerations ( Risso, 2011, 2016 ). Of great importance is

the recent review article by Risso (2018) , where a summary of the

‘state-of-the art’ of the subject can be found. 

The objective of this investigation is to contribute to the un-

derstanding of bubbly flow hydrodynamics, by comparing theory

and experiments carried out using optical measurements and digi-

tal image processing techniques. Some experiments from Figueroa-

Espinoza and Zenit (2005) were revisited; this particular experi-

mental setup allows for the identification of individual clusters, as

well as the measurement of their characteristic parameters, such

as size, mean rise velocity, and the added mass effect (mean clus-

ter velocity). Additionally, some statistical properties of the liquid

phase such as the mean and fluctuating velocity were obtained us-

ing Particle Image Velocimetry (PIV). Particular attention was put

on the clusters lifespan, which, by means of a scaling argument

based on an analogy to the mean free path of statistical mechanics,

was estimated and compared with the measurements as discussed

below. 

2. Materials and methods 

In this investigation two experimental techniques were used:

first, bubble position and geometry were obtained by means of

a digital high speed camera and image processing, and secondly,

the fluid fluctuating velocity was obtained using particle image ve-

locimetry (PIV). 

The experimental setup used in this investigation is shown in

Fig. 1 . A thin channel 20 cm wide and 120 cm high was fabricated

with two glass sheets, separated by two glass strips 3 mm thick.

Nitrogen millimetric bubbles were produced using an array of 10

identical capillaries, connected to a chamber where pressurized

gas was fed through a valve at the channel base. With this array

a nearly mono-dispersed stream of bubbles was produced. More

details of the experiment can be found in Figueroa-Espinoza and

Zenit (2005) . 

The gas volume fraction α is calculated as follows: 

α = 

V g 

V T 

= 

�H 

H + �H 

(6)

where V T and V g are the total volume of the mixture and the

gaseous phase respectively, H is the level of liquid in the chan-

nel without bubbles, and �H is the increase in height that results
rom the presence of bubbles. Since the channel is very narrow, a

mall volume difference causes the level to increase considerably. 

Mixtures of de-ionized water and glycerine were used in or-

er to vary the liquid properties. In order to reduce coalescence,

 small amount of MgSO 4 was dissolved in the mixture following

enit et al. (2001) . Since contamination may have an effect on the

xperiment outcome, the liquid resistivity was monitored: it was

lways kept larger than 11 M �/cm ( Table 1 ). 

Experiments were carried out with water, water-glycerine 15%

glyc15 in what follows) and water-glycerine 30% (glyc30). A

ew tests were also conducted in a water-glycerine 50% mixture

glyc50). The parameter space spanned Reynolds numbers in the

ange 90 < Re < 600, and for the Weber number 0.3 < We < 1.6. 

.1. Digital image analysis 

A high speed video camera was used in order to capture im-

ges of the bubbly flow at 150 fps. An image processing routine in

atlab © was implemented in order to measure the bubbles geom-

try, as well as their velocity and position. Digital treatment of the

mages allowed for the identification of clusters: a distance criteria

as applied and then neighboring bubbles that complied with this

ondition were grouped to form individual clusters, as explained

n Figueroa-Espinoza and Zenit (2005) . In the present study the

hreshold distance was two pixels in order to measure clusters size

ore precisely. 

It is not obvious how to objectively define a cluster. For prac-

ical purposes, we used three criteria: one is the aforementioned

istance, the second one is that the bubbles must remain together

or some time; only compound objects whose life time was longer

han two frames were considered as clusters. The third one is size:

 detected object that complies with the previous requisites must

e greater than or equal than two average bubble diameters in size

o be considered a cluster. Clearly this criteria are arbitrary. Never-

heless, tests for different distances and life times were conducted

nd the results were not sensitive to the choice of these parame-

ers. 

Fig. 2 shows a typical digitally treated image. To the left in (a)

he digital image processing routine was used to identify (and la-

el) individual bubbles; to the right (b) individual clusters were

dentified and labeled, for the same image. The position of their

entroids, their area and aspect ratio were recorded, and velocities

ere calculated using the frame rate of acquisition and calibrated

cale images in the horizontal and vertical directions. Note that a

ark area without objects is present in the images (at the bottom).

his was a mask used to block a region where the back-light was

ot uniform, in order to avoid false objects detection during the

mage processing routine. 

A routine to identify individual objects in subsequent frames

as developed in order to follow trajectories of bubbles and clus-

ers. Clusters were considered to “die” or break when their area

and velocity) changed substantially during one time step. When

ubbles separate from the cluster the position of the centroid

hanges abruptly, and the same thing happens when the cluster

eaves the field of view (FOV). 
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Fig. 2. Binarized image showing detected objects; (a) individual bubbles, (b) clusters. Both views came from the same frame and experiment: water-glycerine 15%, α = 0 . 018 . 

Fig. 3. Trajectories of detected objects through the camera field of view; (a) indi- 

vidual bubbles, (b) clusters for water-glycerine 15%, α = 0 . 018 . Axis labels in mil- 

limeters. 
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Fig. 3 shows a set of trajectories, displaced to have the same

rigin, so the dispersion can be observed as in a bubble plume:

o the left in (a) individual bubbles and (b) clusters. It is clear

hat lifespan of clusters is shorter compared with single bubbles,

hich can be detected crossing the entire field of view (of about

0 cm × 30 cm). Some individual bubbles have shorter trajectories

ecause some leave the FOV at the borders, and some others are

ost because they aggregate forming new clusters. 

The uncertainty of these measurements is due to the camera

esolution, which is 5.4 pix/mm. Taking into account the frame

ate (1/150 s), the error propagates to a maximum value of 2.7

m/s in the velocity. The error in gas volume fraction is rather
mall for low α. The maximum uncertainty is estimated to be of

α = 0 . 0018 , for α = 0 . 13 . 

.2. Liquid velocity fluctuations 

Liquid velocity fluctuations were obtained using a PIV system

apable of measuring the flow field with an acquisition frequency

f 10 Hz. The laser sheet (of approximately 0.5 mm thick) was

laced at the middle plane between the two glass sheets (chan-

el walls). This is the plane where the dominant components of

he motion are located. Fluorescent particles were used as tracers

20 μm diameter, polyamide particles, PSP-20, Dantec Dynamics) in

rder to reduce reflections from the bubbles surface by using an

ptical filter. The camera has a 1024 × 1024 pixel sensor. Consid-

ring the optical arrange (lens and working distance) the field of

iew comprised an area of 60 mm × 60 mm approximately, located

t equal distances from the channel edges. Therefore, the spacial

esolution was 16.7 pixels/mm. To obtain the velocity fields from

he PIV images, we used the software Dynamic Studio (Dantec Dy-

amics). Interrogation areas of 32 × 32 interrogation pixels were

onsidered. Using an adaptive correlation and filtering, the velocity

ectors were obtained, comprised of 1024 vectors in each frame.

he velocity fluctuations were obtained by averaging in time and

pace, considering for 600 frames (one minute of measurements).

he corresponding results will be discussed in Section 3.1 . 

The maximum α that could be studied using our setup is rela-

ively large, given the fact that our thin channel allowed for a 2D

iew of the bubbles (they move confined in a single plane, without

verlapping). In our particular case we reached a volume fraction

f αmax = 0 . 13 , the main limitation being the measurement of the

ixture height. For larger gas fractions the accumulation of foam

t the upper surface yielded imprecise measurements of the in-

rease in height. The maximum uncertainty for α is estimated to

e of δα = 0 . 0018 for α = 0 . 13 ). 

. Results 

The velocity probability distributions were obtained from a

arge set of bubbles for each volume fraction as was shown in

igueroa-Espinoza and Zenit (2005) . PDF’s of the bubble velocity

re not shown here for brevity, but they fit normal distributions

ell, with mean velocities decreasing with α. Fig. 4 shows the

ean velocities for all liquids, showing both individual bubbles and

lusters. As expected, velocity decreases with volume fraction, and

he cluster velocity is always smaller than the velocity of single

ubbles, confirming an added mass effect. The dashed line repre-
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Fig. 4. Bubble and cluster velocity for different values of the gas volume fraction. 

The markers represent: water bubbles (crosses), water clusters (asterisk), water- 

glycerine 15% bubbles (empty squares), water-glycerine 15% clusters (filled squares), 

water-glycerine 30% bubbles (empty diamonds), and water-glycerine 30% clusters 

(filled diamonds). The dashed line corresponds to Eq. (3) . 

Fig. 5. Equivalent diameter D eq in terms of gas volume fraction α. The different 

symbols represent tests in different liquids: circles, water; diamonds, glyc15 and 

squares, glyc30). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Equivalent Reynolds number for bubbles and clusters. Filled markers corre- 

spond to clusters while empty markers represent bubbles moving in: water (circles), 

glyc15 (diamonds), glyc30 (squares) and glyc50 (stars). 
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sents the theoretical prediction of Van Wijngaarden (1976) , given

by Eq. (3) . Theoretical considerations lead to the correct trend for

low bubble fractions, even if the flow is confined between two

walls. 

It is important to note that the bubble diameter increases with

the volume fraction since its formation dynamics changes with the

gas flow rate through the capillary tubes. In the experiments re-

ported here the bubble size increased slightly with α, so the bub-

ble diameter was not strictly constant. Fig. 5 shows the equivalent

diameter D eq as a function of the gas volume fraction α for dif-

ferent liquids. Various sets of experiments were carried out with

different capillaries for injecting the bubbles. They had different

lengths and internal diameter. The results presented here were

chosen because they presented a smaller growth of D eq with α.

Other experiments showed a monotonically increasing D eq with α,

with larger variations (more than 56%). The functional relationship

D eq ( α) is relevant because it will define the behavior of the equiva-

lent Reynolds number, which will be further discussed next. How-

ever, the fact that D eq depends on α is not an uncertainty, since the

measurement of D eq depends on the number of pixels per millime-
er allowed by the optical setup. In our experiments the definition

as 5.4 pixels/mm, which represented a maximum uncertainty of

pproximately 9% for the smallest bubbles (of about D eq = 2 mm).

he maximum equivalent diameter variations with respect to that

f a single bubble ( D eq when α → 0) for each liquid was 21% for

ater, 10% for glyc15 and 18% for glyc30. 

Bubbles and clusters velocities are also represented in a di-

ensionless form as an equivalent Reynolds number in terms of

he volume fraction α in Fig. 6 . This Reynolds number was cal-

ulated using the equivalent diameter D eq and the average bubble

ise velocity u b , i.e. Re eq = u b D eq ρ/μ. The clusters D eq is the equiv-

lent diameter corresponding to a sphere with the same volume

s the detected cluster. In the figure, filled markers correspond to

lusters while empty markers represent bubbles moving in differ-

nt liquids: water (circles), glyc15 (diamonds), glyc30 (squares) and

lyc50 (stars). The error bars correspond to the propagation of er-

or caused by the uncertainty of D eq and u b , which in the worst

ase represents a relative error of approximately 20% in the equiv-

lent Reynolds number. 

The equivalent Reynolds number seems to decrease with α for

ow volume fractions. This appears to be the result of the afore-

entioned added mass effect. Note that the equivalent Reynolds

umber should, in principle, follow a monotonically decreasing

rend such as that shown in Fig. 3 (for constant viscosity and den-

ity). One may observe in Fig. 5 that the way Re eq varies with α
ollows from the variation of D eq as the gas volume fraction in-

reases. 

It is worth noting that clusters always rise slower than indi-

idual bubbles for the same conditions. Clusters rise at a slower

ate because they are preferably aligned horizontally in this type

f experimental setup ( Figueroa-Espinoza and Zenit, 2005 ), which

n turn would induce a larger drag coefficient. This is in accor-

ance with Biesheuvel and Van Wijngaarden (1982) who showed

hat two horizontally aligned bubbles move slower than a bubble

air aligned vertically. 

As the volume fraction increases, the mean clusters’ area also

rows. Fig. 7 shows the clusters mean area A c , normalized with re-

pect to the mean bubble area A b for each volume fraction, in a

DF representation. In general, most clusters are formed by two

ubbles, and it is less likely to find clusters formed by many bub-

les. It can be seen form the figure that for α = 0 . 025 there are

ewer clusters formed in the range 3 < A c / A b < 4, while the other

wo curves ( α = 0 . 041 and 0.073) are very similar. The PDF that

orresponds to α = 0 . 073 seems to be larger for clusters with ar-

as larger than 5 mean bubble diameters. 
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Fig. 7. Probability density function of clusters normalized area with respect to the 

mean bubble area A b for water. 

Fig. 8. Normalized liquid velocity fluctuations as a function of gas volume frac- 

tion: (a) vertical and (b) horizontal components. Crosses: water, squares: glyc15, di- 

amonds: glyc30, stars: glyc50. The dotted line is a power law proportional to α0.8 . 

 

m  

n  

0

Table 2 

Power law exponent, m for the vertical liquid velocity fluctuations and 95% 

confidence intervals (C.I.), mcorr stands for the fitted exponent when the 

fluctuations are normalized with the single bubble velocity u b ( α → 0). 

Liquid m C.I. R 2 mcorr C.I. R 2 corr 

water 0.55 0.02–1.01 0.70 0.38 −024–1.00 0.45 

glyc15 0.81 0.45–1.12 0.94 0.51 0.31–0.71 0.93 

glyc30 0.90 0.73–1.07 0.99 0.70 0.49–0.91 0.97 

glyc50 1.06 0.89–1.23 0.99 0.76 0.63–0.89 0.99 

Table 3 

Power law exponent for the horizontal liquid velocity fluctuations m and 95% 

confidence intervals (C.I.), mcorr stands for the fitted exponent when the fluc- 

tuations are normalized with the single bubble velocity u b ( α → 0). 

Liquid m C.I. R 2 mcorr C.I. R 2 corr 

water 0.99 −0.90–2.90 0.67 0.87 −1.03–2.77 0.60 

glyc15 1.38 0.73–2.03 0.92 0.88 0.47–1.29 0.93 

glyc30 1.38 0.99–1.76 0.98 1.09 0.81–1.37 0.98 

glyc50 1.76 1.41–2.10 0.99 1.39 1.05–1.73 0.98 
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Some peaks may appear in the vicinity of 3 < A c / A b < 4 (or

ore, if α is further increased). The experimental conditions did

ot allow us to test this tendency for volume fractions higher than

.13. 
.1. Velocity fluctuations 

The instantaneous liquid velocity was obtained from the PIV ex-

eriments as described in Section 2.2 . From these measurements,

he mean and standard deviation of the velocity in each direc-

ion were obtained, considering variations both in time and space.

ig. 8 shows the normalized liquid vertical velocity fluctuation <

 

′ 2 
y > /u 2 

b 
in (a), as well as the liquid normalized horizontal velocity

uctuation < u ′ 2 x > /u 2 
b 

in (b), as a function of gas volume fraction

. Here u ′ x and u ′ y represent standard deviations of the horizontal

nd vertical velocity signals. Note that here u b is not constant, in-

tead, it is the average terminal bubble velocity for the correspond-

ng gas volume fraction α, as described in Mendez et al. (2013) and

artinez-Mercado et al. (2007) . The vertical and horizontal veloc-

ty fluctuations are much greater than the theoretical lower bound

rom Eqs. (4) and (5) . The dotted line in the figure represents the

caling law 〈 u ′ 2 y 〉 /u 2 
b 

∝ αm , where m = 0 . 8 . The curves were fitted

o the power law and the values of m , the 95% C.I. for m , and R 2 

ere tabulated on Tables 2 and 3 . This power law exponent m

or the vertical velocity fluctuations varies between 0.55 (water)

nd 1.6 (glyc50), which is a similar range as the one in Martinez-

ercado et al. (2007) . However our 2D results differ in the sense

hat in our case the exponent increases as viscosity increases, con-

rary to the observations in Martinez-Mercado et al. (2007) , who

bserved a decreasing trend with α. For the horizontal liquid ve-

ocity fluctuations m goes from 0.99 (water) to 1.76 (glyc50). Note

hat many authors normalize the velocity fluctuations with the ter-

inal velocity of a single unconfined bubble u b ( α → 0) ( Riboux

t al., 20 09; 20 08; Risso et al., 20 08 ). In order to compare with

hat normalization, Tables 2 and 3 have columns that show a cor-

esponding exponent for the power law 〈 u ′ 2 y 〉 /u b (α → 0) 2 ∝ αmcorr ,

hich was estimated from the known variation of the bubble ve-

ocity with gas volume fraction. Unfortunately the experimental

uctuations are not conclusive due to the scattering of the data. 

The bubbles velocity fluctuations were calculated as well, from

he bubbles velocity components u bx and u by . Note that u b = <

 by > and depends on α. Fig. 9 shows the bubble vertical (a)

nd horizontal (b) bubble normalized velocity fluctuations. Mark-

rs represent different liquids. The dotted line shows a power law

rend proportional to α0.4 . These fluctuations behave differently to

hose of the liquid. The observed exponent for the bubbles case

s not in agreement with the one observed in 3D experiments

 Riboux et al., 2009 ). Sangani et al. (1991) studied the problem of

 bubble mixture subjected to small-amplitude oscillatory motion.

hey calculated the normalized variance of the bubbles velocity to
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Fig. 9. Normalized bubble velocity fluctuations as a function of gas volume frac- 

tion: (a) vertical and (b) horizontal components. Crosses: water, squares: glyc15, di- 

amonds: glyc30, stars: glyc50. The dotted line is a power law proportional to α0.4 . 

Table 4 

Power law exponent for the vertical bubble velocity fluctuations m and 95% 

confidence intervals (C.I.), mcorr stands for the fitted exponent when the 

fluctuations are normalized with the single bubble velocity u b ( α → 0). 

Liquid m C.I. R 2 mcorr C.I. R 2 corr 

water 0.33 0.29–0.36 0.99 0.20 0.16–0.24 0.98 

glyc15 0.36 0.25–0.46 0.94 0.10 −0.10–0.30 0.22 

glyc30 0.35 0.17–0.53 0.91 0.18 −0.07–0.43 0.67 

glyc50 0.39 0.16–0.61 0.93 0.21 −0.08–0.50 0.67 

Table 5 

Power law exponent for the horizontal bubble velocity fluctuations m and 

95% confidence intervals (C.I.), mcorr stands for the fitted exponent when the 

fluctuations are normalized with the single bubble velocity u b ( α → 0). 

Liquid m C.I. R 2 mcorr C.I. R 2 corr 

water 0.65 0.31–0.99 0.94 0.48 0.24–0.62 0.94 

glyc15 0.40 −0.40–1.30 0.70 0.31 −0.70–1.31 0.53 

glyc30 0.34 0.09–0.59 0.95 0.22 −0.13–0.57 0.80 

glyc50 0.49 0.25–0.73 0.98 0.35 0.16–0.53 0.97 
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leading order in α as: 

〈 u 

′ 2 
by 〉 /u 

2 
b = 0 . 275 α (7)

The fluctuations obtained experimentally are larger than expected

from Eq. (7) , and also larger than those reported by Bunner and

Tryggvason (2002b) from 3D simulations. It seems that confine-

ment has a strong effect on the bubbles velocity fluctuations. This

could be the result of the instability of the trajectory influenced by

the walls ( Figueroa-Espinoza et al., 2008 ). The values of the power

law exponent m and its goodness of fit are tabulated in Tables 4

and 5 , as was explained in previous paragraphs for the case of liq-

uid velocity fluctuations. 
.2. Clusters lifespan 

The lifespan of a cluster was considered to be the time lapse

etween the cluster detection and its breakup (see Section 2.1 ).

robability density functions were obtained from frequency his-

ograms of the lifespan t l for each volume fraction α. These lifes-

an PDFs can be well approximated by log-logistic distributions,

ommonly used in survival analysis ( Kleinbaum and Klein, 2012 ).

ithin this context, lifespan (or survival) can be intuitively repre-

ented by the Survival Function, which is the complementary cu-

ulative distribution function SF = 1 − CDF , where CDF stands for

he cumulative distribution function, in terms of lifespan. Clusters

ifespan is also shown in nondimensional form, as 

 s = t l u b /D eq . (8)

Hereafter, D eq is the diameter of an equivalent sphere with the

ame volume as the cluster. We take u b to be the mean cluster ve-

ocity. One point in the SF represents the probability of (a cluster)

urviving at least t s . Fig. 10 (a) shows an example for α = 0 . 062 as

 function of the normalized time t s . The dotted line is the best

t (log-logistic) SF, and the continuous (stepped) line represents

he measured SF from the experimental histogram. To the right,

ig. 10 (b) shows the SF functions for three different volume frac-

ions α: solid line: α = 0 . 077 , dashed line: α = 0 . 062 and dotted

ine: α = 0 . 054 . As the volume fraction increases, the lifespan de-

reases. 

Fig. 11 shows a plot of timespan as a function of gas vol-

me fraction, for different test liquids, represented with different

arkers: circles: water, triangles: glyc15, squares: glyc30. Gray and

lack markers represent different experiments (the gray markers

ere run with a different bank of capillaries with an internal di-

meter slightly larger). From this figure it is clear that timespan

ecreases with volume fraction; however, this trend does not hold

or α < 0.04. For very low volume fractions, clustering is incipient;

ost clusters are formed by two bubbles and there are just a few

f them. Therefore, in this case the timespan remains unaffected

y the change in volume fraction. The uncertainty of the normal-

zed timespan can be estimated using its standard deviation, which

ecreased with volume fraction; the largest one was about 29%

or α = 0 . 017 , decreasing to about 16% for α = 0 . 12 . We analyzed

he propagation of error for the time span of clusters, considering

he worst-case scenario in estimating the size of error bars , now

hown in Fig. 11 . The error may be very large for low α, but re-

uces to reasonable values for larger α. This uncertainty makes it

ard to identify the behavior of the life span for low gas volume

raction. The error propagation for the equivalent Reynolds num-

er turned out to be important, resulting in a 20% variation in the

orst case. 

The trend (dotted) line represents a power law that scales as
−1 . 4 , which will be discussed in the next section. 

. Discussion and conclusions 

A nearly monodispersed bubbly flow was studied in a thin

hannel. Digital image processing routines were used to mea-

ure individual bubbles and clusters position, velocity, trajectories,

hape and sizes. The added mass effect predicted by potential the-

ry was observed in our thin channel, as a decrease in mean bub-

le velocity with gas volume fraction α. The trajectories of indi-

idual bubbles and clusters were plotted to show the remarkable

ifference in lifespan between individual bubbles and clusters. 

Bubble, clusters and liquid velocity fluctuations were calculated.

he latter were obtained using PIV. The normalized liquid (vertical

nd horizontal) velocity fluctuations for the thin channel are larger

han the theoretical prediction given by Eq. (4) . The experimental

urves for the normalized fluctuations were fitted to a power law
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Fig. 10. Survival distribution function in terms of the normalized lifespan. (a) Example for α = 0 . 062 . The continuous (stepped) line is a normailzed histogram of the 

measurements, and the dotted line is the best fit (log-logistic) SF. (b) Shows SF functions for three different volume fractions: solid line: α = 0 . 077 , dashed line: α = 0 . 062 

and dotted line: α = 0 . 054 . 

Fig. 11. Clusters normalized lifespan t s for different volume fractions α, represented 

with different markers: circles: water, triangles: glyc15, squares: glyc30. Gray and 

black markers represent different experiments. The trend (dotted) line represents a 

power law that scales as α−1 . 4 . 
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caling of the type 〈 u ′ 2 y 〉 /U 

2 
b 

∝ αm , where m has a value 0.83 for

he vertical component of the velocity fluctuations, and 1.38 for the

orizontal component. The 95% C.I.s for the power law exponent of

he aforementioned scaling accounts for the values reported in the

iterature ( Martinez-Mercado et al., 2007; Mendez et al., 2013; Ri-

oux et al., 2009 ). Unfortunately the experimental data is scattered

nd these intervals are still too wide to be conclusive. 

The lifetime of clusters was estimated with the individual clus-

ers trajectories through the camera’s field of view. This lifetime

s dependent on the gas volume fraction α. Experiments show

hat for very low volume fraction α < 0.04 this dependency is very

eak, which may result from weak hydrodynamic interactions be-

ween the few clusters in the liquid (most of them formed by only

wo bubbles), at a relative large distance from each other for low

. For larger values of α, the cluster lifespan is greatly reduced. 

The mechanism that causes clusters to break can be related

o two important factors: bubbles wakes and velocity fluctuations

aused by hydrodynamic interactions. Let us consider the latter

echanism in order to find an analogy to statistical mechanics: let

s suppose that each cluster will traverse a path, subjected to dif-

erent hydrodynamic forces (some attractive, that tend to keep the

ubbles clustered, and others repulsive or disruptive that tend to

reak it). Suppose that this trajectory will end, as the mean free
ath (from statistical mechanics), at a length L , which is defined

s: 

 ∝ 

1 √ 

2 nπD 

2 
eq 

(9) 

here D eq is the cluster equivalent diameter, n = N/V T is the bub-

le density number, where N is the number of bubbles. The num-

er density and the gas volume fraction can be related by: 

= 

V B 

V T 

= n 

π

6 

D 

3 
eq (10) 

hich leads to: 

 = 

D eq 

6 

√ 

2 α
. (11) 

This length decreases with volume fraction, as expected. If one

onsiders the clusters lifespan t l to be proportional to L and in-

ersely proportional to the square root of the variance of the ve-

ocity: 

 l ∝ 

L √ 〈 v 2 
b 
〉 . (12) 

And considering that 〈 v 2 
b 
〉 scales with the volume fraction as: 

 v 2 b 〉 = k v 2 b α
q (13)

here k is a positive constant of order one, q is an exponent

hat relates velocity fluctuations to volume fraction ( q = 0 . 8 as in

iboux et al., 2009 ), and v b is a mean rise velocity , then 

 l ∝ 

D eq 

v b 
1 

α
2+ q 

2 

. (14) 

For the present case, this leads to: 

 s ∝ α−1 . 4 (15) 

hich is represented by the dotted line near the normalized lifes-

an t s in Fig. 11 . This trend is close to the experimental behav-

or for large α. The slope of the experimental data is not con-

tant, so one cannot draw any quantitative conclusions. One can

btain a fit for the power law for α > αs , for any given threshold

s , say αs = 0 . 05 , but the choice of this threshold is still arbitrary.

he experimental curves were fitted to a power law of the form

 s ∝ α−b for the threshold αs = 0 . 05 , and the exponent b , as well

s its goodness of fit parameters were tabulated in Table 6 . This
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Table 6 

Power law exponent b for the normalized life span of clus- 

ters t s , 95% confidence intervals (C.I.), and R 2 . 

liquid b C.I. R 2 

glyc15 exp1 −0.54 −1.63–0.55 0.97 

glyc30 exp1 −1.34 −1.96–0.72 0.98 

water exp2 −0.78 −1.00–0.57 0.90 

glyc15 exp2 −0.90 −2.15–0.35 0.83 

glyc30 exp2 −0.57 −1.49–0.36 0.78 
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particular threshold gave fitted values of the power law exponent

in the range −1 . 34 ≤ b ≤ −0 . 54 . 

Previous investigations ( Bouche et al., 2012 ) have reported that

normalized liquid velocity fluctuations dominated by wake interac-

tions are independent of α, so in that case the resulting exponent

would be α−1 . Unfortunately it is not clear which is the case, since

(depending on the threshold αs taken) some data are fitted closer

to α−1 . 4 and others to α−1 (above α = 0 . 05 ). A more comprehen-

sive experimental campaign could have to be conducted to clarify

this issue. 

Finally, two regimes were identified in terms of the normal-

ized lifespan: one regime which is independent of α for very low

gas volume fraction, and another regime where normalized lifes-

pan decreases as α−b , where according to a scaling argument, the

exponent b = −1 when the interaction is dominated by wakes, and

b = −1 . 4 when hydrodynamic interaction is the main cause of liq-

uid velocity fluctuations. Our results indicate that both mecha-

nisms may be occurring simultaneously. 
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