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Low-dimensional thermoelectricity opens the possibility of improving the performance and the effi-
ciency of thermoelectric devices by redistributing the electron density of states through the reduction
of dimensionality. In this work, we explore this possibility in silicene by reducing its dimensionality
through the periodic arrangement of gated electrodes, the so-called gated silicene superlattices.
Silicene electrons were described quantum relativistically. The transmission, conductance, and ther-
moelectric properties were obtained with the transfer matrix method, the Landauer-Büttiker formal-
ism, and the Cutler-Mott formula, respectively. We find that the redistribution of the density of
states together with the intrinsic characteristics of silicene, the local bandgap and the large spin-orbit
coupling, contribute to the enhancement of the thermoelectric properties. In particular, the Seebeck
coefficient and the power factor reach values of a few mV/K and nW/K2. These findings in conjunc-
tion with the low thermal conductivity of silicene indicate that silicene-based nanostructures could
be the basis of more efficient thermoelectric devices. Published by AIP Publishing.
https://doi.org/10.1063/1.5045479

I. INTRODUCTION

In the last decade, research in 2D materials has grown
enormously promoted by the extraordinary and exotic proper-
ties discovered in graphene.1–3 Silicene is a graphene-like
material formed by silicon (Si) atoms distributed in a honey-
comb lattice.4 In contrast to graphene, silicene possesses a
low-buckled lattice attributed to mixed sp2-sp3 hybridization
that results in the larger overlapping of the Si orbitals.5 The
buckling distance is about 0.44 Å.6 Theoretical studies have
shown that silicene is a semiconductor with a gap of
1.55 meV7 whose charge carriers behave as Dirac massless
fermions.8 Freestanding silicene exhibits an intense spin-orbit
coupling interaction of 3.9 meV,9 which is useful for spin
and valley manipulation of the carriers10 and for the detec-
tion of quantum spin Hall effect.7 Other exotic effects have
also been predicted in silicene such as giant magnetoresis-
tance11,12 and chiral superconductivity.13 In general, due to
its outstanding properties and its natural compatibility with
modern electronics, silicene is considered a promising mate-
rial for future applications in nanotechnology.

Modern research in thermoelectricity could provide a
solution to reduce the amount of heat wasted by society
today. According to recent studies, the heat released to the
environment represents more than 50% of the energy

produced,14 which is evidence of the low performance of
modern thermal machines and electronic devices. Recovery
of heat is possible according to the Seebeck effect,15,16

which consists of the generation of a potential difference
between two contacts by the existence of a temperature gradi-
ent. The conversion efficiency of a thermoelectric material is
measured by the dimensionless quantity known as Figure of
Merit ZT ¼ σS2T=κ,17 where S is the Seebeck coefficient, σ
is the electric conductance, T is the average absolute temper-
ature, and κ is the thermal conductivity. The strategy to
improve ZT is to reduce the thermal conductivity as much as
possible while increasing the power factor σS2. In bulk con-
ventional materials, this is difficult to realize, since S, σ, and
κ are interrelated according to Wiedemann-Franz law.18

However, from the work of Hicks and Dresselhaus,19

research in thermoelectricity has focused on low-dimensional
materials or nanostructured systems, with the conjecture that
higher ZT values could be found.20,21 The reduction of
dimensionality and the quantum confinement causes the
redistribution of the density of states (DOS), which provide
the opportunity to vary the power factor and thermal conduc-
tivity independently and thus be able to improve ZT . Today,
the objective is to overcome the technological limit value
ZT ¼ 3 to develop more efficient devices that compete
industrially.22

As expected, many theoretical studies of the thermoelec-
tric effect in various graphene-based nanostructures have
been carried out, reporting an improvement in thermoelectric
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performance.23 Following the same guideline, the study of
thermoelectricity in other low-dimensional materials, like sil-
icene, has grown significantly over the years. In particular,
works on silicene nanoribbons (SiNRs) using ab initio
numerical methods and density functional theory (DFT) have
found high values of the Figure of Merit (ZT). Zberecki
et al.24 calculated a maximum value of ZT � 2:5 in zigzag
SiNRs at 90 K. Pan et al.25 obtained that SiNRs with
hydrogen-passivated edges are structurally stable and
reported a value superior of ZT ¼ 4:9 at 600 K in the arm-
chair case. Sadeghi et al.26 showed that by introducing nano-
porous and tuning the Fermi energy a value of ZT � 3 can
be obtained, reaching a maximum of 3.5 over the temperature
range 100 K-400 K. Yang et al.,27 considering a nanostruc-
ture composed of silicon-germanium mixture found high ZT ,
up to 2.5, at room temperature. Here, it is important to
remark that all these large values for the figure of merit are
of theoretical nature and valid under the specific conditions
in which they were derived. One of the major hurdles nowa-
days to assure or to be close to these outstanding values is
the production of high quality silicene samples as well as the
specific nanostructuration required in each case. Another type
of nanostructure that has been extensively investigated is the
so-called gated superlattices (GSLs). Previous works have
explored the thermoelectric effects in graphene gated superlat-
tices (GGSLs) and have found giant values of Seebeck coeffi-
cient and the power factor.28–32 The possibility of building
GSLs in silicene today is limited, since it has not been possi-
ble to synthesize silicene due to the instability of its buckled
geometry. However, some experimental works have managed
to deposit silicene in certain metallic substrates through epitax-
ial growth,33–38 which can be exploited for the development of
silicene-based electronic devices. For instance, Tao et al.39

devised the synthesis-transfer-fabrication process of the sili-
cene field-effect transistor. This process could be implemented
and adapted to build GSLs on a silicene sheet.

In this paper, we have theoretically investigated the bal-
listic electronic transport and the thermoelectric effects in
gated silicene-superlattices (GSSLs). Our model considers
the Dirac-like Hamiltonian to describe the behavior of the
carriers through the superlattice. This Hamiltonian includes
the spin-orbit coupling and the on-site potential correspond-
ing to low-buckled lattice of silicene. The electrostatic gated
profile is introduced by a series of electrodes coupled to sili-
cene sheet, which generates a superlattice of rectangular
potential barriers alternated with potential wells. The transfer
matrix method and Landauer-Büttiker formalism were used
to calculate the transmission probability and conductance,
respectively. The Seebeck coefficient and the power factor
were obtained using the Cutler-Mott formula. We analyze the
electronic transport and thermoelectric properties of each
spin-valley component. We found that the conductance oscil-
lations induced by the superlattice periodic potential give rise
to maximums in the Seebeck coefficient and the power
factor. In the K valley, the spin-down component dominates
the thermoelectric properties, while in the K’ valley the
spin-up component does. The maximum values reached by
the Seebeck coefficient and the power factor are in the order
of mV/K and nW/K2, respectively. Finally, we have

confirmed that the redistribution of the density of states,
induced by the reduction of the dimensionality of the
GSSLs, is what improves the Seebeck coefficient and the
power factor. This improvement in conjunction with the low
thermal conductivity of silicene could be the base for the
construction of more effective thermoelectric devices.

II. THEORETICAL MODEL FOR THE
THERMOELECTRIC DEVICE BASED ON SILICENE
SUPERLATTICES

The thermoelectric system that we have considered is a
device formed by a sheet of silicene wrapped by a dielectric
substrate on which a periodic series of metal electrodes is
coupled, as shown schematically in Fig. 1(a). Through the
electrodes, an external electrostatic field can be applied. The
electrostatic potential profile is a periodic supperlattice formed
by rectangular barriers and wells arranged in the direction of
the x axis. Here, the strength of the potential barriers is Ub

with width dB and the wells have zero potential with width
dW . In Figs. 1(b) and 1(c) we show the potential profiles for
the K and K0 valley, respectively. As we can notice the poten-
tial profile of the spin-up and spin-down components is not
equivalent, in great extent, due to the on-site potential differ-
ence (Δz) caused by the low-buckled structure of silicene.

The silicene superlattice is joined at one end to a hot
contact and at the other one to a cold contact. According to
the Seebeck effect, the temperature difference generates an
electric current through silicene, and thus a potential differ-
ence between the contacts can be measured.

To study the transport and thermoelectric properties in
this device, we have considered the following low-energy
effective Dirac Hamiltonian:9,12

H ¼ �hvF( pxτx � ηpyτy)� (σηΓSO � Δz)τz þ UI, (1)

where vF is the Fermi velocity of the carriers in silicene, p is
the canonical momentum vector, τ represents the pseudospin
Pauli matrices, I is the 2 × 2 unity matrix, σ ¼ +1 denotes
the electron spin property, η ¼ +1 denotes the K and K’
valleys of band structure of silicene, ΓSO is the spin-orbit

FIG. 1. (a) Schematic representation for thermoelectric silicene devices
based on p-n junction superlattices. The arrow indicates the direction of the
heat flow. Electrostatic potential profile for valleys (b) K and (c) K’. The
green (clear) and black (dark) lines correspond to the down and up spin com-
ponents in the case of K valley. For the K’ valley, this correspondence is
reversed.
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coupling energy, Δz is the on-site potential difference between
two triangular sub-lattices which conform the hexagonal low-
buckled lattice of silicene, and U describes the electrostatic
profile of the superlattice. We have assumed well known
values for the Fermi velocity and the spin orbit coupling
energy:9 vF ¼ 0:5� 106 m/s and ΓSO ¼ 3:9 meV. From now
on, the quantities related to energy and length will be given in
terms of E0 ¼ 7 meV and L0 ¼ 81:1 nm, respectively. These
units of energy and length are typical in silicene studies.11,12

In Fig. 2, we show a diagram of the silicene band struc-
ture. Figures 2(a) and 2(b) correspond to the spin-up and
spin-down components of the K valley, respectively. As
ΓSO ¼ Δz the spin-up component is gapless, while the spin-
down has a gap equal to 2Δz. In principle silicene is
undoped, so the Fermi energy lies in between the valence
and conduction band, left side of Figs. 2(a) and 2(b). By
gating, it is possible to tune the Fermi energy as well as to
shift the Dirac cones, right side of Figs. 2(a) and 2(b). By
shifting the Dirac cones, we can create potential barriers. For
the K’ valley, the band structure is similar; however, the spin
components are reversed. This band structure is distributed in
the corners of the hexagonal Brillouin zone of silicene.

The corresponding eigenfunction for this Hamiltonian
can be written in terms of incident and reflected waves as
follows:

ψ j x, yð Þ ¼ Aj
1
υþj

� �
eikx,jx þ Bj

1
υ�j

� �
e�ikx,jx

� �
eikyy, (2)

where the index j indicates the wave function of the barrier
(B) and well (W) zone, respectively. Additionally, the coeffi-
cients of the bispinor functions are given as

υ+j ¼ � E � Uj

� �þ σηΓSO � Δz,j
� �

+kx,j þ iηky
: (3)

Here, we must remember that the well has a zero electrostatic
potential, i.e., UW ¼0. The components of the wave vector
for each case are given by

kx,j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � Uj

� �2� σηΓSO � Δz,j
� �2�k2y

q
, (4)

and ky ¼ k�F sin θ, where k�F¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2� σηΓSO�Δz,Wð Þ2

p
is the dimen-

sionless magnitude of the Fermi wave-vector and θ is the
angle of incidence of the electrons in the x–y plane.

To relate the unknown coefficients A j and Bj of the right
and left semi-infinite regions, we require to use the continuity
condition of the wave function employed for each well-
barrier interface as well as the conservation of ky. Thus,
using the standard transfer matrix method we can connect the
input state with the output state, i.e.,

Ain

Bin

� �
¼ M(N)

T
Aout

0

� �
, (5)

where the total transfer matrix M(N)
T for N-period superlattice

is given by

M(N)
T ¼ MBMW½ �NM�1

W , (6)

where MB ¼ D�1
W DBPBD�1

B

� �
DW and MW ¼ D�1

W�
DWPWD�1

W

�
DW , which are described in terms of the dynamic

matrix

Dj ¼ 1 1
υþj υ�j

� �
, (7)

and propagation matrix

Pj ¼ e�ikx,jd j 0
0 eikx,jd j

� �
, (8)

where the index j represents both barrier (B) and well (W)
cases.

We can calculate the quantum probability transmission
coefficient using the following expression:

Tσ,η E, θð Þ ¼ 1

M(N)
T (1, 1)

		 		2 , (9)

FIG. 2. Diagram of the silicene band structure for the (a) spin-up and
(b) spin-down components of the K valley. For the K’ valley, the band struc-
ture is similar; however, the spin components are reversed.

FIG. 3. Transmission probability as a function of energy and the angle of
incidence for the GSSLs structure for two different conduction channels: (a)
up-K and (b) down-K. The structure is formed by 10 barriers with potential
UB ¼ 5 and width dB ¼ 0:5, where the width of the wells is dW ¼ 1:0.
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where σ and η denotes the spin and valley channel,
respectively.

The energy band structure can be obtained from the dis-
persion relationship which relates mathematically the wave
vector of the supperlattice with the trace of the unit-cell trans-
fer matrix (barrier plus well), i.e.,

cos qSLdSLð Þ ¼ 1
2
Tr DBPBD

�1
B � DWPWD

�1
W


 �
¼ cos kx,BdBð Þ cos kx,WdWð Þ
� Ξ sin kx,BdBð Þ sin kx,WdWð Þ, (10)

where

Ξ ;
E E � UBð Þ � σηΓSO � Δz,Bð Þ σηΓSO � Δz,Wð Þ � k2y

kx,Bkx,W
:

(11)

The unit cell length is dSL ¼ dB þ dW , and qSL is the Bloch
wave vector characteristic of an infinite periodic supperlattice.

Additionally, if we know the band structure, we can
derive the density of states (DOS) of the system, which is
mathematically given by the following equation:

DOSσ,η E, θð Þ ¼ 1
2π

@qSL E, θð Þ
@E

				
				: (12)

By summing over all angles, we obtain the integrated density
of states DOSσ,η(E). And by considering the contribution of
both valleys and both spins, we get the global density of
states DOS(E).

The Landauer-Büttiker formalism provides a way to cal-
culate the ballistic transport. In this framework, the conduc-
tance for an individual type of electronic channel (η, σ) is

given as follows:

Gσ,η(EF) ¼ e2

h

X
ky

Tσ,η EF, ky
� �

¼ G0k
�
F

ðπ=2
�π=2

Tσ,η EF, kF sin θð Þ cos θ dθ, (13)

where G0 ¼ e2LyE0=h2vF, with Ly the width of the silicene
sheet in the transverse y-coordinate. We have taken a typical
value of 200 nm for this structural parameter. The global con-
ductance is simply the sum of the four conduction channels,
i.e., G ¼ P

η,σ Gσ,η.
In order to analyze the thermoelectric effect in this

system, the calculation of the Seebeck coefficient is required.
This crucial quantity can be written in the linear response
approximation as

S ¼ �ΔV

ΔT
¼ GS

G
, (14)

where

G ¼
ðþ1

�1
G(E) � @f

@E

� �
dE, (15)

GS ¼
ðþ1

�1
G(E) � @f

@E

� �
E � μ

eT

� �
dE, (16)

with T and μ the average (equilibrium) temperature and
chemical potential and f the Fermi distribution function. By
considering that @f =@E is a peaked function around EF , we
can carry out the so-called Sommerfeld expansion by devel-
oping G(E) in a Taylor series around EF . By keeping the
dominant terms and calculating the corresponding integrals,

FIG. 4. Transmission probability as a
function of the energy for different
angles of incidence: (a) 15�, (b) 30�,
(c) 45�, and (d) 60� both for the up-K
channel and for the down-K channel.
The parameters of the superlattice are
the same as in Fig. 3.
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we can arrive to the following expressions:

G ¼ G(EF), (17)

GS ¼ π2k2BT

3e
G(1)(EF), (18)

where G(1)(EF) represents the first derivative of G(E) evalu-
ated at the Fermi energy. By substituting these expressions in
Eq. (14), we obtain the well-known Cutler-Mott formula:40

S(E) ¼ π2k2BT

3e
@ lnG(E)½ �

@E

				
E¼EF

: (19)

In the present study, we have considered T ¼ 50 K. This elec-
tion is twofold, first to assure the validity of the Cutler-Mott
relation in 2D materials41 and second to be in a reasonable

range of quantum coherent transport.42 For the case of a single
spin-valley channel, the Seebeck coefficient is calculated by
substituting the global conductance G for Gσ,η(E).

The power factor is a quantity that results from the
product between the squared magnitude of the Seebeck coef-
ficient and the conductance, i.e., S2G. High values of this
factor directly improve the efficiency of the device in the
conversion of heat into electrical energy, here is where its
importance lies.

III. NUMERICAL RESULTS

We have carried out a systematic study which consists of
the calculation of transport properties such as transmission
and conductance as well as the calculation of thermoelectric
properties such as the Seebeck coefficient and the power
factor for N-period GSSLs. The intrinsic characteristics of

FIG. 5. Density of states as a function
of energy for different angles of inci-
dence: (a) 15�, (b) 30�, (c) 45�, and (d)
60� both for the up-K channel and for
the down-K channel. The parameters
of the superlattice are the same as in
Fig. 3, and β is equal to vF. So, the ver-
tical axis represents simply the number
of states.

FIG. 6. Conductance as a function of energy for the GSSLs structure and
for two different conduction channels: (a) up-K and (b) down-K. The struc-
ture is formed by 10 barriers with potential UB ¼ 5 and width dB ¼ 0:5. The
width of the wells is dW ¼ 1:0.

FIG. 7. Seebeck coefficient as a function of energy for the GSSLs structure
and for two different conduction channels: (a) up-K and (b) down-K. The
parameters of the superlattice are the same as in Fig. 6.
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silicene allow us to discriminate the behaviour between the
spin-valley channels (σ, η), an advantage over graphene
itself. Also, we have obtained the density of the states of the
system which helps us to explain the connection between the
transport and thermoelectric phenomena.

In our full study, we only consider GSSLs formed by 10
rectangular barriers with potential UB ¼ 5 and width
dB ¼ 0:5, which are separated by zero potential wells
of width dW ¼ 1:0. The on-site potential difference is
Δz ¼ ΓSO ¼ 0:56 throughout the structure (Δz,B ¼ Δz,W ). The
widths for barriers and wells are typical values used in the
literature.11,12 These values are also appropriate if we want to
incorporate magnetic barriers.11,12 Furthermore, these values
lie in the range of the reported widths for electrostatic barri-
ers in 2D materials.42 In Fig. 3, it is shown a color map
(contour) of the transmission as a function of the energy and
the angle of incidence for the GSSLs structure both for the
case of up-K channel [Fig. 3(a)] and for the down-K channel
[Fig. 3(b)]. As we can see in the maps, the transmission con-
tains very marked areas with certain propagation probability,
where we highlight tunneling areas (red zones) and areas
where propagation is impossible (blue zones) or bandgaps.
At Tσ,η ¼ 1, the superlattice is practically invisible (transpar-
ent) for carriers, such an effect is a result of Fabry-Pérot reso-
nances inside the wells, in contrast to the gaps (Tσ,η ¼ 0),
where the interference is destructive. The transmission

contour is composed of bands in the form of branches con-
centrated around the normal angle, here it is where the
highest probability of propagation is found. With the angle of
incidence the bands narrow, the transmission decreases and
the forbidden zones (gaps) grow. In addition, we have
obtained a clear difference in transmission between the spin-
valley channels, which provides the possibility of choosing a
specific type of current, and thus to be able to modulate the
transport and thermoelectric properties of this system. It is
important to mention that the results of the transmission for
up-K 0 and down-K 0 are identical to those obtained for
down-K and up-K, respectively. So, it is not necessary to
present them explicitly in this paper. This similarity comes
from the equivalence of the wave vector between these spin-
valley channels.

In Fig. 4, it is shown the transmission versus energy for
different angles of incidence: 15�, 30�, 45�, and 60� for the
10-period GSSLs structure and both for the up-K channel
and for the down-K channel. Note that these results are hori-
zontal cutoffs in Fig. 3 for each angle case. In this figure, we
can see the energy miniband structure is formed by propagat-
ing regions (Tσ,η = 0) separated by gaps (Tσ,η ¼ 0). Note
that there is a clear difference in the band structure between
both spin-valley conduction channels, a crucial aspect for
applications in valley-spintronics. It is important to highlight
that the minibands distribution is significantly modified with
the change of the angle of incidence. In fact, as the angle
increases the width of the minibands narrows and the width
of the gaps widens, leading to a drastic change in transmis-
sion at the edges between allowed minibands and the gaps.

In Fig. 5, it is shown the density of states as a function
of energy for the same angles and spin-valley components as
in the previous figure. The vertical axis represents simply the
number of states, since the parameter β ¼ �hvF has units of
energy and distance. In the middle of the permitted regions, a
finite number of states were found, while into the gaps there
are no states available as we expected. However, the aspect
that we most appreciate is the accumulation of a large
number of states at the edges between the available regions
and the gaps. Additionally, we can see that the accumulation
of states increases up to four times as the incident angle
grows from 15 � to 60 �. Also, the width of the regions of
allowed states is reduced in accordance with the transmission
bands. As we will see later, summing over all angles will

FIG. 8. Density of states as a function of energy for the GSSLs structure
and for two different conduction channels: (a) up-K and (b) down-K. The
parameters of the superlattice are the same as in Fig. 6 and β is equal to vF.

FIG. 9. Power factor as a function of energy for the GSSLs structure and for
two different conduction channels: (a) up-K and (b) down-K. The parameters
of the superlattice are the same as in Fig. 6.

FIG. 10. Global transmission probability as a function of energy and the
angle of incidence for the GSSLs structure. The structure is formed by 10
barriers with potential UB ¼ 5 and width dB ¼ 0:5, where the width of the
wells is dW ¼ 1:0.
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result in DOSσ,η(E) with accumulation of states at preferential
energies, and as a consequence to the improvement of the
thermoelectric properties.

In order to obtain results that involve measurable and
comparable quantities with experiments, we have considered
the calculation of conductance, which is a quantity that
counts the contribution of the transmitted carriers, that move

in all directions, to the total current flowing through the
device. In Fig. 6, we show the conductance for the 10-period
GSSLs structure and for up-K and down-K channels. In this
figure, below a certain energy level (E , 9), the conductance
is an oscillating curve formed by high-conduction zones
alternated with low-conduction zones. In this energy range,
there is a clear difference in conductance between the two

FIG. 11. Global transmission probabil-
ity as a function of energy for different
angles of incidence: (a) 15�, (b) 30�,
(c) 45�, and (d) 60�. The parameters of
the superlattice are the same as in
Fig. 10.

FIG. 12. Global density of states as a
function of energy for different angles
of incidence: (a) 15�, (b) 30�, (c) 45�,
and (d) 60�. The parameters of the
superlattice are the same as in Fig. 10,
and β is equal to vF.
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channels, for the case of up-K channel the small oscillations
localized into high-conduction zones are smooth while in the
case of down-K channel they are more pronounced. In addi-
tion, we can notice that as the energy of the carriers grows
(E . 9) the superlattice potential becomes irrelevant, and
consequently Tσ,η will tend to 1. Then, according to Eq. (13),
the conductance will be proportional to the Fermi energy as
well as the same for both channels.

As it is expected, drastic changes in transport will
improve the thermoelectric properties. In Fig. 7, we ratify
this fact with the calculation of the Seebeck coefficient from
the conductance using Eq. (14), where we substitute G by
Gσ,η. Our results show that the maximum values of the
Seebeck coefficient are located in the limits between low and
high-conduction regions. Here, we emphasize that the values
obtained for the down-K channel are up to one order of mag-
nitude higher than for the up-K channel. For both spin com-
ponents, the Seebeck coefficient reaches values of the order
of mV/K. The appearance of the peaks in the Seebeck coeffi-
cient is associated with the redistribution of the states by
reducing the dimensionality of the system. Figure 8 presents
the DOS as a function of energy for both the up-K channel
and the down-K channel. For the up-K channel case, we can
see that the density of states has an increasing trend with
energy regions of high accumulation of states. We can also
appreciate that the accumulation of states occurs precisely at
energy regions at which the Seebeck coefficient is maximum.
For the down-K channel, in addition to the mentioned trend
of the DOS for the up-K channel, we can see a small
bandgap at the low energy side (E , 2:4) and energy
zones with abrupt changes in the DOS. In these energy
zones is where we find the maximum values of the Seebeck
coefficient, see Fig. 7. Finally, the combination of conduc-
tance and high Seebeck coefficient will be reflected in the

improvement of the power factor, as shown in Fig. 9. The
maximum power factor observed in the up-K channel is
around 0.35 nW/K2, while in the down-K channel is about
3.5 nW/K2, then it is ten times higher than in the other
channel. So, the greater this factor, the higher the Figure of
Merit and therefore a better thermoelectric efficiency, since
these quantities are closely related.

Now, we consider an analogous study to the proceeding
for valley-spin components, but now for the case of global
transport. Figure 10 shows a color map of the transmission as
a function of the energy and angle of the incident carriers for
GSSLs consisting of 10 barriers with potential energy UB ¼ 5
and width dB ¼ 0:5, where the width of the wells is
dW ¼ 1:0. In this case, the transmission is calculated as the
average of the four spin-valley channels, i.e., T ¼ 1

4

P
σ,η Tσ,η.

The global transmission is T ¼ 1
2 T",K þ T#,K
� �

, since the
transmission of the up-K and down-K channels is equal to the
transmission of the down-K 0 and up-K 0 channels, respectively.
In Fig. 10, it is observed that the global transmission zone
includes the union of the transmission zones of both channels,
obtaining a greater extension than the individual parts. The
global transmission is balanced in most of the zones, that is,
decrease in areas of high transmission and grew in areas of
low transmission, even where there were gaps. Also, there are
transmission zones that maintained their value due to the fact
that they are equivalent in both channels. An important point
is that the global transmission maintains a structure similar to
the transmission obtained individually for each channel,
formed by transmission bands that are concentrated around the
normal angle and whose amplitude decreases when the angle
grows. Figure 11 shows the transmission probability versus
energy for the GSSLs structure and for different incident
angles of the carriers: 15�, 30�, 45�, and 60�. Note that these
minibands profiles are horizontal cutoffs of transmission of
Fig. 10 for each angle case. In Fig. 11, we can notice that as

FIG. 13. Global conductance as a function of energy for the GSSLs formed
by 10 barriers with potential UB ¼ 5 and width dB ¼ 0:5. The width of the
wells is dW ¼ 1:0.

FIG. 15. Global density of states as a function of energy for the GSSLs. The
parameters are the same as in Fig. 13 and β is equal to vF.

FIG. 14. Seebeck coefficient as a function of energy for the GSSLs. The
parameters are the same as in Fig. 13.

FIG. 16. Power factor as a function of energy for the GSSLs. The parame-
ters are the same as in Fig. 13.
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the angle of incidence increases the width of the bands is
reduced and consequently the gaps are enlarged. Similarly, for
large angles (60�), the value of the transmission is affected
and falls to around 0.5. This interplay between the spin-valley
components is also reflected in DOSσ,η(E, θ), see Fig. 12. As
in the case of individual spin-valley components, there are
regions of available states that correspond to transmission
bands, while the transmission gaps have no available states.
We can also notice that the accumulation of states is taking
place at the edges of the minibands, however, in this case an
additional peak is induced by the interplay between the spin-
valley components. This reshaping of the distribution of states
will affect the global DOS(E) as well as the transport and ther-
moelectric properties.

In Fig. 13, we show the global conductance as a function
of energy for the 10-period GSSLs. As we mentioned in
Sec. II, the global conductance is simply the sum of the four
conduction channels, i.e., G ¼ 2(G",K þ G#,K), where the
factor 2 is due to the equality between the channels up-K
(down-K) and down-K 0 (up-K 0). In this figure, we can see for
E , 9 that the conductance has the shape of an oscillating
curve formed by zones of low and high-conduction which
alternate in the direction of the energy axis, while for high
energies the conductance increases linearly with kF. In addi-
tion, we can notice the presence of small pronounced con-
ductance oscillations inside the zones of high-conduction.
The abrupt changes in the conductance are reflected in high
values of the Seebeck coefficient as shown in Fig. 14, where
the high values of the Seebeck coefficient are located in the
limits between low and high-conduction zones. The
maximum value is 4 mV/K, which is greater than the value
obtained in the up-K channel (2 mV/K) and less than the
value obtained in the down-K channel (35 mV/K). Figure 15
presents the global DOS as a function of energy which
counts the total number of states due to the factor β ¼ �hvF.
The global DOS has a similar pattern as the DOS for the
down-K channel, that is, energy regions with high accumula-
tion of states, a small bandgap at low energies and energy
zones with abrupt changes. This redistribution of the states is
the origin of the maximum values of the Seebeck coefficient
observed in Fig. 14. The peaks of the Seebeck coefficient are
responsible for improving the power factor as seen in
Fig. 16, and therefore increase the efficiency of the system to
convert heat into electric energy. In Fig. 16, we found a
value of power factor of approximately 5 nW/K2, greater than
the value obtained both for the up-K channel (0.35 nW/K2)
and for the down-K channel (3.5 nW/K2) individually.

IV. DISCUSSION

In this section, we will discuss some relevant aspects
about our results as well as others, such as the silicene
thermal conductivity, directly related to the efficiency of a
possible thermoelectric device based on GSSLs.

In first place, we want to remark that the obtained values
for the Seebeck coefficient and the power factor, of the order
of mV/K and nW/K2, respectively, are only possible if very
specific conditions are met. The following are considered as
fundamental:

• It is necessary that the electronic transport be of ballistic
nature, that is, that the transport characteristic be a pure
manifestation of coherent quantum interference. The main
condition to assure this transport regime is that the mean
free path of the charge carriers be larger than the length of
the device. The extraordinary mean free path of 2D mate-
rials makes that this regime be totally reachable. For
instance, in graphene mean free paths of 15 μm at low
temperature and of 1 μm at room temperature are
reported.43 In fact, unprecedented phenomena like Klein
tunneling,42 atomic collapse,44 negative refraction,45 and
size quantization46 in graphene owe its experimental veri-
fication to coherent quantum interference. In silicene, the
electron mean free path is shorter than in graphene but
still very large.47 Besides, the continuous refinement of
the growth processes and patterning techniques make
plausible that in the near future we can think in coherent
quantum transport in a wide range of temperatures.
Furthermore, this transport regime assures that scattering
by impurities, imperfections, and phonons have a limited
role. We are also considering that the periodic potential
varies slowly in the scale of the interatomic distances of
silicene, so it does not constitute a source of valley-spin
scattering.48 Here, it is also important to mention that
even when the spin-orbit interaction is stronger in silicene
than in graphene, we are not considering it as strong as in
germanene or transition metal dichalcogenides to repre-
sent a source of valley-spin scattering.49

• The potential barriers have to be as sharp as possible, oth-
erwise effects such as collimation will dominate the trans-
mission across the barriers. In fact, it is well known that
smooth potential junctions leads to collimation, that is, the
transmission of charge carriers is only possible at normal
and nearly normal incidence.50 So, our results cannot be
reproduced by smooth potentials because the transmission
minibands, which are the key, are well defined at oblique
incidence. Fortunately, nowadays the refinement of the
fabrication techniques of pn junctions allows sharp poten-
tials. In fact, negative refraction in graphene has been
possible due to the improvement of the mentioned tech-
niques.45 In silicene, these techniques are under way.
Nowadays, there is a fabrication technique for field effect
transistors,39 and in principle the same patterning process
for metallic contacts can be used to obtain potential barri-
ers. So, we can think that sooner or later sharp potentials
will be possible in silicene too.

In second place, we want to talk about the spin-orbit interac-
tion. Although this interaction remains fixed throughout the
study, it has important consequences in practically all rele-
vant quantities: transmission, density of states, conductance,
Seebeck coefficient, and power factor. The main effect of the
spin-orbit coupling, in conjunction with Δz, is a gapless band
structure for the spin-up component of the K valley and a
gapped one for the spin-down component of the same valley,
see Figs. 2(a) and 2(b). For the K’ valley, the roles between the
spin components are reversed. This differentiation between the
spin components affects all transport and thermoelectric proper-
ties. For instance, the spin-down component of the density of
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states presents a gap at the low energy side and the correspond-
ing conductance curve turns out steeper, see Figs. 6 and 8.
These characteristics improve and dictate in great extent the
total thermoelectric properties, in other words, the spin-
down component is dominant. Under this context, we can
expect that materials with a stronger spin-orbit interaction
like germanene and transition metal dichalcogenides could
result in steeper conductance characteristics and conse-
quently better thermoelectric properties. These materials
could also help to have a greater energy range for the operation
of thermoelectric devices.

In third place, we want to contrast our results with the
available literature. In particular, we consider instructive a
comparison between silicene and graphene superlattices. The
case of graphene superlattices has previously been studied
from a theoretical stand point.32 We can notice that in general
the results are qualitatively similar for both systems; however,
there are important quantitative differences. For instance, in
silicene superlattices, the Seebeck coefficient derived from the
oscillating conductance reaches a maximum value of 4 mV/K,
while in graphene superlattices the same coefficient has a
maximum value of roughly 0.3 mV/K, that is, the values
obtained in the present work are one order of magnitude
higher. In the case of the power factor, we have calculated a
maximum value of 5 nW/K2, in contrast to the maximum
obtained in 8-period graphene superlattices of approximately
5 pW/K2, so our value is three orders of magnitude higher. To
carry out this comparison, we have divided the Seebeck coef-
ficient of graphene superlattices by a factor of 6 because the
temperature in that case was 300 K. Likewise, we multiply the
conductance by a factor of 2 to account the contribution of the
K’ valley. Regarding experimental works, there are important
contributions trying to unveil the thermoelectric response of
graphene.41,51 However, as far as we know there are no exper-
imental reports about gated graphene and/or silicene superlatti-
ces. So, we will try to contrast our results with the mentioned
experimental ones of pristine graphene. In the case of the ther-
moelectric power (TEP) or Seebeck coefficient, the values
obtained for graphene and silicene superlattices are larger than
the reported ones in the referred experimental works. For
instance, the maximum TEPs for graphene and silicene super-
lattices were 0.3 mV/K and 4 mV/K, while for graphene on
hBN (G/hBN) the maximum TEP was 182 μV/K.51 This is con-
sistent with the idea that nanostructuring a material, that is,
redistributing the density of states, the thermoelectric prop-
erties can be improved. It is also important to remark that
the physical origin of the maximum values in superlattices
is quite different with respect to G/hBN and G/SiO2.

41,51 In
the latter, the electron-hole puddles formed by the substrate
random potential fluctuations are directly involved in the
maximization of the TEP. In the former, the conductance
oscillations associated with the redistribution of the
density of states are the reason of the TEP improvement.
Furthermore, the type of transport is quite different, while
in G/hBN or G/SiO2 we are talking about diffusive trans-
port, sample sizes and scattering mechanisms, in superlatti-
ces we are dealing with coherent quantum transport. In the
case of the power factor, we cannot make a direct compari-
son because for G/hBN the conductivity is reported in

units of S/cm rather than in S, the typical unit for a 2D
material like graphene, see the seminal work of Novoselov
et al.52 In fact, to relate conductivity and conductance the
cross section of the device is necessary; however, as far as
we corroborate, this information is not available in the
experimental report.51 At this point, it is important to
mention that in principle we are dealing with high quality
graphene, at least a graphene that assures ballistic transport.
Therefore, the conductivity that we are reporting is of the
order or even better than that reported in the experimental
works. Under these circumstances, we expect that the
enhancement of the power factor be proportional to the rise
of the TEP.

Finally, we want to address an important quantity like
the thermal conductivity. Its relevance lies in its direct rela-
tion to the figure of merit and consequently to the efficiency
of the thermoelectric devices. To this repect, it is known that
the thermal conductivity of silicene is mostly given by
phonons. However, as far as we know, it has not been possi-
ble to make experimental measurements of thermal conduc-
tivity due to the challenges involved in synthesizing
freestanding silicene. In contrast, many theoretical studies of
phonon transport in silicene have been carried out by
employing two principal numerical simulation techniques:
the classical Molecular Dynamics (MD)53 and the first princi-
ples method.54 The reported values of thermal conductivity
are in the range of 5-65W/mK, lower than suspended gra-
phene,55 3000-5000W/mK. The big difference is that in gra-
phene the flexural phonons corresponding to acoustic
out-plane vibration modes contribute more than 50% to the
thermal conductivity,56 while in silicene contribute less than
10%,57 and the thermal transport is dominated mostly (90%)
by in-plane longitudinal phonon modes. The low-buckled
lattice of silicene breaks the reflection symmetry causing a
strong out-plane phonon scattering. In addition, it has been
found that the thermal conductivity of graphene and silicene
could be modulated depending on the substrate where they
are deposited.58,59 For instance, it is reported that graphene
nanoribbons (GNRs) supported on silicon dioxide (SiO2) have a
low thermal conductivity,60 �80W/mK at 300K. The enormous
reduction is due to the fact that the contact of the graphene
sheet with the surface of the substrate affects the flexural
phonon modes limiting its movement of vibration. In the
same direction, a theoretical study of silicene suspended on
amorphous SiO2 was carried out, resulting in a reduction up
to 78% of the thermal conductivity at 300 K.61 Even better,
by applying an external electric field along the upward
out-of-plane direction, the thermal conductivity of silicene
can be reduced up to two orders of magnitude of its sus-
pended value.62 This is very important for us, since in our
device, the gated structure is created through the application
of external electric field along the perpendicular direction to
the silicene layer. In short, the effect of the reduction of the
thermal conductivity, combined with the increased values of
the power factor obtained in this work, allows us to think in
an improvement of the figure of merit of up to two orders of
magnitude with respect to GGSLs. This reinforces the idea
that silicene could be a good option for its implementation
in more efficient thermoelectric devices.
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V. CONCLUSIONS

In summary, we show that low-dimensional thermoelec-
tricity in silicene could be a good option to improve the per-
formance and efficiency of thermoelectric devices. The
natural redistribution of the electron density of states in gated
silicene superlattices in conjunction with the intrinsic charac-
teristics of the material, local bandgap, and large spin-orbit
coupling, give rise to a significant improvement of the ther-
moelectric properties. A Dirac-like Hamiltonian was used to
describe silicene electrons. The transfer matrix approach, the
Landauer-Büttiker formalism, and the Cutler-Mott formula
were used to obtain the transmission, transport, and thermo-
electric properties, respectively. We find that the conductance
has a steeper oscillating trend than in graphene. This charac-
teristic gives rise to Seebeck coefficients and power factors
of the order of mV/K and nW/K2, respectively. These large
values of the power factor in combination with the low
thermal conductivity of silicene could be the base for better
figures of merit. This is even more relevant if we consider
that the thermal conductivity is further reduced by supporting
substrates or the application of an external perpendicular
electric field. In fact, fundamental structural conditions of
gated silicene superlattices give the possibility of manipulat-
ing in a controlled way the electronic transport, and conse-
quently, the thermoelectric properties.
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