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We study models of hairy nanoparticles in contact with a hard wall. Each particle is built of a spherical
core with a number of ligands attached to it and each ligand is composed of several spherical, tangen-
tially jointed segments. The number of segments is the same for all ligands. Particular models differ
by the numbers of ligands and of segments per ligand, but the total number of segments is constant.
Moreover, our model assumes that the ligands are tethered to the core in such a manner that they can
“slide” over the core surface. Using molecular dynamics simulations we investigate the differences in
the structure of a system close to the wall. In order to characterize the distribution of the ligands around
the core, we have calculated the end-to-end distances of the ligands and the lengths and orientation of
the mass dipoles. Additionally, we also employed a density functional approach to obtain the density
profiles. We have found that if the number of ligands is not too high, the proposed version of the
theory is capable to predict the structure of the system with a reasonable accuracy. Published by AIP
Publishing. https://doi.org/10.1063/1.5010687

I. INTRODUCTION

The problem of description of nanoparticles at interfaces
and at solid-liquid interface in particular has attracted a con-
siderable amount of attention recently.1–7 This interest results
from scientific and technological importance of those sys-
tems.8,9 Indeed, a better understanding of the structure and
thermodynamic properties of nanoparticles at interfaces is
essential for getting deeper knowledge of several important
physical processes like heterogeneous catalysis, biological
surface activity, biosensing, and self-assembly.10–14

Among different nanoparticles the so-called hybrid (or
hairy) molecules that are formed from flexible chains (lig-
ands) grafted to spherical cores play an important role.15–18

Hairy nanoparticles combine electric, magnetic, or electronic
properties of the core with flexibility and mechanical strength
of the polymer brush. Numerous systems involving hairy
nanoparticles have been studied. In particular, gold particles
modified with different organic molecules, like surfactants,
fluorinated and hydrogenated thiols, and with mixtures of
organic molecules have been widely used as diagnostic or ther-
apeutic agents and as smart nanoplatforms with maximized
biospecificities, cf. the review19 and the references quoted
therein. An interesting class of hairy nanoparticles can be
formed from metal cores functionalized with liquid crystals.
The functionalization of metal nanoparticles with liquid crys-
talline polymers (e.g., with hydroxypropyl cellulose) leads to
new materials exhibiting, for example, optical anisotropy.20

The grafted liquid crystal molecules can change their spatial
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or orientational order under application of an external stimulus
and thus they are promising candidates for future optoelec-
tronic and metamaterial technologies.21 Several next examples
of hairy nanoparticles have been discussed in a prospective
article by Fernandes et al.22

Theoretical description of systems involving hairy par-
ticles requires introduction of appropriate models. The first
class of models of hairy nanoparticles assumes that the lig-
ands are rigidly attached to the core, i.e., the positions of
grafting points are fixed. The second model, however, accepts
the anchor points weakly connected to the cores and, conse-
quently, allows for their rearrangements. Such rearrangement
has been observed for systems involving CdSe/CdS core-shell
particles with a brush-like layer of polyethylene oxide or
branched polyethyleneimine and others.23–28 In fact, in numer-
ous experimental systems, the anchored ligands are more or
less mobile and their rearrangement on the core surface is pos-
sible.19,21 The model with mobile ligands was used by Nikolic
et al.29 in their studied of self-assembly of nanoparticles mod-
ified with weakly anchored chains. Mobility of ligands can
affect effective interactions between nanoparticles30 and their
self-organization.31,32 When two particles meet together, the
anchor points can slide away to make room for the cores to
approach more closely. Depending on the grafting density
and the length of ligands, various structures can be observed.
Such effects have been reported for colloids with surface-
mobile linkers.33,34 Moreover, colloids with surface-mobile
linkers play an important role in the systems of biological
relevance.35

A great majority of theoretical studies of systems involv-
ing hybrid nanoparticles have been carried out using computer
simulation methods. Besides simulations, various analytical
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approaches such as integral equation theories, density func-
tional theories (DFTs), self-consistent field theories, and field
theoretic approaches have been used. Those treatments have
been outlined by Ganesan and Jayaraman.36 However, despite
the great effort, a clear understanding of the rules governing
the behavior of nanoparticles at interfaces and development of
theoretical tools to describe and to predict their adsorption at
solid surfaces is still an open challenge.

Density Functional Theory (DFT) is a statistical-
thermodynamical method to analyze structure and thermo-
dynamic properties of several systems, including systems
involving particles of a quite complex geometry37–42 or
even geometrical constructs.43 One of the first approaches to
describe adsorption of star and branched polymeric molecules
was proposed by Malijevský et al.44 Next, this problem was
tackled in several studies.45–48 The theories quoted above usu-
ally assume that all segments of polymers are of the same size.
However, the method developed by Jiang et al.49 considered
polymers with different sizes of segments. Usually, successful
theories of polymers combine a modified fundamental mea-
sure theory for the excluded-volume effects,50,51 Wertheim’s52

thermodynamics perturbation theory for the polymer connec-
tivity, and the mean field approximation for van der Waals
attraction.

Formally, the architecture of hairy nanoparticles and the
architecture of star polymers are quite similar. In both cases,
particles are built of a central unit (core) and a number of chains
(ligands) attached to it. Therefore, it is of interest to check if
density functional methods developed for star polymers44,49

could be employed to describe nonuniform systems of hairy
particles.

In this work, we study the model of hairy nanoparticles
with L ligands that are weakly connected to the core in con-
tact with a hard wall. The ligands are chains and each chain is
built of the same number N of identical segments. The ligands
can “slide” over the core surface. We neglect the presence
of a solvent. In other words, our model belongs to the class
of models with an implicit solvent. According to that treat-
ment, the presence of a continuous solvent is accounted for
by introducing “effective” interactions between nanoparticles.
The aim of our research is two-fold. First, using molecu-
lar dynamics simulations we compare the structure in the
systems comprising of different molecules in layers adja-
cent to the wall. Particular systems differ by the number of
ligands L and the number of segments per chain N, under
the constraint of constancy of the total number of segments,
N × L = constant. Our aim is also to investigate how the dis-
tribution of segments around the core changes when a particle
is approaching the wall. For this purpose, we evaluate the so-
called mass dipoles53–55 and compute the histograms of their
lengths and orientations with respect to the wall. The second
aim of our research is to compare the results of computer sim-
ulations with theoretical predictions of a version of DFT. Of
course, the information that can be gathered from DF calcula-
tions is limited in comparison with computer simulations. We
concentrate in a comparison of density profiles of cores and of
segments of ligands.

The paper is organized as follows. In Sec. II, we describe
details of the model and of the simulations. Then, Sec. III

reports the results of simulations for the systems with the
total number of segments N × L = 36. Section IV is divided
into two subsections. First, we outline briefly the theory
(Sec. IV A) and then we show representative comparisons of
theory and simulations (Sec. IV B). The paper is summarized in
Sec. V.

II. MODEL AND SIMULATION DETAILS

A single hairy particle is built of a spherical core of the
diameterσ0 and L ligands attached to the core. The ligands are
just flexible chains and each chain comprises of N tangentially
jointed spherical segments of identical diameters σs ≡ σ. We
study particles with different numbers of ligands and of the
segments, under the constraint of the constancy of the product
N t = L × N. In other words, the total number of segments
associated with a given core, N t , is constant.

The first segment of each ligand is attached to the core
at the distance d = (σ0 + σ)/2. In simulations the existence
of the core-grafted segment bond is assured by imposing the
harmonic potential

u(b)
0s = k0s(r − d)2. (1)

Similarly, the chain connectivity is ensured by the harmonic
segment-segment (ss) potentials

u(b)
ss = kss(r − σ)2, (2)

acting between neighboring segments. We should stress that in
theoretical calculations the model of harmonic bonds between
spherical units, Eqs. (1) and (2), is replaced by the model
of tangentially jointed spherical particles. This difference
between models used in theory and simulations is decried in
Sec. IV.

The non-bonded segment-segment (ss), segment-core
(0s), and core-core (00) interactions are described by the
Lennard-Jones (12,6) potentials

ukl(r) =

{
4εkl[(σkl/r)12 − (σkl/r)6], r < rcut,kl,
0, otherwise.

(3)

In the above, kl = ss, 0s, 00, εkl’s are the energy parameters and
rcut ,kl’s denote the cutoff distances. We use Lorentz-Berthelot
combining rules for the cross interactions, σ0s = (σ00 + σss)/2
and ε0s =

√
ε00εss. According to our notation, σ00 ≡ σ0,

σss ≡ σs, ε00 = ε0, and εss = εs. Except for the core-core
interactions, the cutoff distances are rcut ,kl =σkl, for kl = ss and
kl = 0s, i.e., those interactions are purely repulsive. For core-
core interactions, however, rcut ,00 = 3σ0. In our simulations,
we have assumed that the entities that are directly bonded do
not interact via the Lennard-Jones potential.

The particles are confined between two hard planar walls.
The wall-core and the segment-core potentials are given by

v0(z) =

{
0, σ0/2 < z < Lz − σ0/2,
∞, otherwise

(4)

and

vs(z) =

{
0, σ/2 < z < Lz − σ/2,
∞, otherwise

. (5)

The Lennard-Jones diameter of segments is the unit of
length, σ ≡ σs, and the core-core Lennard-Jones energy
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parameter is the unit of energy, ε ≡ ε0. The mass of the
core molecule, m, was assumed to be the unit of mass. The
mass of each segment was (arbitrary) set to m/10. It is obvious
that dynamic properties of the system would depend on the
accepted ratio of the masses. Our interest, however, is only in
the evaluation of the equilibrium structure of the system.

Performing simulations we consider an ensemble of
“hairy” particles in a rectangular box of the X, Y, and Z dimen-
sions equal XL, YL = XL, and ZL, respectively. The walls of
the box located at z = 0 and z = ZL are just hard walls and
the distance, Z l, is large enough to assure the existence of the
region of a uniform fluid at the middle of the box. The sys-
tem is periodic in X and Y directions. The total number of
segments is fixed and equal N t = 36. The particles with the
following pairs of the number of ligands, L, and the number
of segments, N, were studied: (L, N) = (3, 12), (4, 9), (6, 6),
(9, 4), and (12, 3). In our study, we set σ0 = 4σ and εs = ε/10,
rcut ,0s =σ0s and rcut ,ss =σ. As it has been mentioned above, the
cutoff distance of the core-core Lennard-Jones (12,6) potential
was 3σ0 = 12σ. In other words, the segments of the ligands
“screen” attractive core-core forces. The energy constants of
the binding potentials, k0s and kss, were 1000ε/σ2. These val-
ues assure that the deviations of the bond lengths from their
equilibrium values are small. The reduced length, time, and
temperature are, respectively, defined as follows: r∗ = r/σ,
τ∗ = τ

√
ε/(mσ2), and T ∗ = kT /ε. All the calculations were

performed at T ∗ = 2.
Molecular dynamics simulations were carried out using

LAMMPS56,57 package. The temperature was controlled by
a Berendsen thermostat. The distance ZL ranged from 120σ
to 240σ. In the majority of the runs, the box dimension XL

was 150σ, and for longer (N ≥ 9) ligands, a bigger box
was used. The total number of nanoparticles was at least
15 000 (the number of all simulated atoms was 37 times larger).
Usually, the simulations were carried with ∆τ = 0.002. After
equilibration (for at least 107 time steps), the production runs
for at least 108 time steps were performed. The jobs were run
in parallel and the number of nodes was usually 24. In order
to probe uncorrelated configurations, the accumulation of the
structural quantities was carried out after 100 time steps.

We evaluated local densities of cores and of segments,
a pseudo-two-dimensional core-core radial distribution func-
tions in the slabs of 1σ wide in planes parallel to the walls.
We have also computed the end-to-end distances of ligands,
de(z), averaged over all ligands within a given particle in

function of the distance of the core from the lower wall at
z = 0. Moreover, for each particle, we have also calculated the
mass dipole. According to the definition,53–55 we determined
the center of mass of all the segments, Rl, first, and then the
mass dipole vector is defined as Rm = Rl � r0, where r0 is
the position of the core. The vector Rm characterizes the sym-
metry of the distribution of the segments. The orientation of
the mass dipole of nanoparticles can be described as the dis-
tribution function P(z, t), where t = cos(θ) and θ is the angle
between the vector Rm and the unit vector perpendicular to the
bottom wall.

For all systems under study, we have also com-
puted “effective” particle-wall and particle-particle interaction
potentials. Definitions of these potentials and the details about
their evaluation are given below.

III. SIMULATION RESULTS

The principal aim of our calculations is to determine how
the structure of the nanoparticles changes with the changes of
the number of ligands L and the number of segments N = N t /L.
Before discussing the results, we introduce codes abbreviating
consecutive systems: the symbol LiNj denotes the system with
i ligands, each composed of j segments.

Figures 1(a) and 1(b) display examples of the core
local densities at high and at moderate bulk core densities,
ρ∗0b = ρ0bσ

3
0 , whereas Figs. 2(a) and 2(b) show the profiles of

all segments of ligands, ρs(z). Note that the curves from Figs.
1(a) and 2(a) have been obtained at quite high total bulk densi-
ties. If the bulk core density is ρ∗0b, then the total bulk density
is ρ∗b = ρ

∗
0b(1 + LNσ3/σ3

0). Thus, for ρ∗0b = 0.468 [Fig. 1(a)],
the total bulk density is ρ∗b = 0.731.

The first observation emerging from the presented curves
is that an increase of the number of ligands (with instanta-
neous decrease of the number of segments per ligand) leads to
increasing ordering of the cores at the wall. In fact, the curves
obtained for the system L12N3 exhibit the existence of well-
ordered layered structure extending over 5-6 layers, and even
at moderate bulk density [Fig. 1(b)], this ordering is well seen.
However, the profiles for the system L3N12 exhibit much less
pronounced order, and at lower density (relevant plots have
been omitted), the profile ρ0(z) possesses only a single peak
in the vicinity of the wall.

Assuming that the “percentage surface coverage” of the
cores can be estimated as S = (σ2/4σ2

0)× 100%, each grafted

FIG. 1. Density profiles of cores, ρ0(z)/ρ0b, at high (a)
and at moderate (b) bulk densities, ρ∗0 = ρ0bσ

3
0 . The

particular curves were evaluated for different values of L
and N and for the values of bulk densities ρ∗0 = ρ0bσ

3
0

given in the figures. The inset of (a) shows the selected
profiles at the contact with the wall, z/σ = 2.
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FIG. 2. Density profiles of segments, ρs(z)/ρsb. Consec-
utive curves in (a) [(b)] were evaluated for the same
systems as the curves in Fig. 1(a) [Fig. 1(b)]. The marks
on the z axis in (a) indicate the positions of the maxima
of ρ0(z) for the system L12N3 from Fig. 1(a).

segment covers ≈1.56% of the core surface. For the largest
number of ligands, L = 12, only 18.76% of the core surface
is directly covered by the grafted segments. The segments of
ligands that are not directly attached to the core also constitute
obstacles in accessibility of other cores to a given core, but due
to mobility, the distance of the closest approach of cores to the
wall is dc = σ0/2 for all systems under study.

When a particle approaches the wall, the segments sur-
rounding the core are re-arranged. The mobility of ligands
increases possibility of changes of the intraparticle structure.
The re-arrangement depends on the number of ligands and
of course on the bulk density. If the number of ligands is
smaller (L ≤ 6), they can more easily move to the hemi-
sphere of the core opposite to the wall and the core can “touch”
the wall. This effect causes that at high bulk density the first
maximum of ρ0(z) is at the distance of the closest approach,
zc1 = dc [Fig. 1(a)]. With this respect, the system behavior
resembles the behavior of a mixture of big hard spheres and
smaller molecules.

For greater L (i.e., for shorter ligands), the re-arrangement
is more difficult and even at high bulk density the first local
density maximum moves to larger distances, zc1 > dc. Our
simulations indicated that that a decrease of the bulk density
causes an increase of zc1, i.e., the adsorption of the particles
takes place not directly at the wall, but at a certain distance
from it. This effect has been also visible for systems involving
particles with long ligands.

We already know that in the case of the formation of a
layered structure at a wall by Lennard-Jones molecules, the dis-
tance between consecutive local density maxima, dm, is com-
parable (it is somewhat smaller) to the Lennard-Jones diam-
eter. At high bulk densities [Fig. 1(a)], the distance between
consecutive local density maxima of ρ0(z) is larger than σ0.
For the system L12N3, it is approximately equal to dm ≈ 4.8σ.
A similar value of dm appears for the systems L9N4 and L6N6.
The situation changes for the systems L4N9 and L3N12, where
dm increases up to≈6σ. The shape of the profiles ρ0(z) is quan-
titatively similar to the shape of the profiles of soft repulsive
particles of diameter bigger than σ0.

We now consider the density profiles of segments, ρs(z);
see Fig. 2. Similarly as in the case of the profiles ρ0(z),
the ordering of segments is more pronounced for particles
with shorter ligands. For long ligands, however, the “fluid of
segments” is much less ordered and even at high bulk densi-
ties this ordering decays quickly with the distance from the
wall. Of course, the ordering is more developed at higher bulk

densities, while at lower bulk densities the segments just “fill”
the space between the cores almost uniformly. If the segment
density profiles exhibit the existence of a well-ordered struc-
ture, then the distance between consecutive local density peaks
is close to the distance between the relevant peaks of the cores.
Note that for the systems L12N3, L9N4, and L6N6 at high bulk
density the consecutive minima of ρs(z) appear at the positions
of consecutive maxima of the function ρ0(z), i.e., the layers of
core molecules are separated by layers composed of segments.

The distance of the closest approach of segments to the
wall is σ/2. In the case of systems involving hard spheres
in contact with a hard wall, the first local density maximum
appears at the distance of the closest approach. However, for
the systems under study, the loci of the first maxima of ρs(z)
are at larger distances z and move toward the bulk part of the
system as the bulk density decreases (see Fig. 2).

At very low bulk densities, the profiles ρ0(z) resem-
ble the profiles of particles in contact with a soft repulsive
wall. Therefore, we have evaluated the “effective Boltzmann-
averaged” wall-core potentials, veff . For this purpose, we sim-
ulated the density profiles ρ0(z) at two very low bulk densities
ρ0b and extrapolated the ratio ρ0(z)/ρ0b to zero bulk den-
sity. In this manner, we evaluated the Boltzmann function,
G(z) = limρ0b→0[ρ0(z)/ρ0b]. The effective potential is defined
as

veff (z) = −kT ln G(z). (6)

The plot of veff (z) for the models in question is shown in
Fig. 3. Note that for all models veff (z = σ0/2) =∞.

FIG. 3. Nanoparticle-wall potential of the average force for the systems with
different L and N.
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For the systems with longer ligands, the effective poten-
tial is less repulsive at distances close to σ0/2 and its range
is larger than for shorter ligands. This is understandable tak-
ing into account that the segments of ligands are obstacles in
approaching core particles to the wall and longer ligands “act”
on larger distances than shorter ones. Instantaneously, at con-
stant total number of segments, the number of longer ligands
is smaller and thus the mobility of tethered segments is easier.
Note that the range of the potential veff (z) is related to N by
zrange = σ0/2 + d + (N � 1)σ and at distances larger than zrange

the potential veff (z) = 0.
One of the parameters that can be used to characterize

the intraparticle structure is the end-to-end distance, de(z). In
our simulations, this distance was averaged over all ligands
attached to a given core and presented and evaluated as a func-
tion of the core distance from the wall. The curves displayed
in Fig. 4 show the values of de(z) normalized by the length of
fully stretched ligands, DN = (N � 1)σ.

Surprisingly, for a given type of molecules, the depen-
dence of de(z) on the distance from the wall is very weak.
Close to the wall a small minimum and following it a small
maximum appear. The values de(z) are slightly larger at lower
bulk density. This effect is quite obvious since for bulk systems
the molecules are more coiled at higher densities.

The normalized end-to-end distances are larger for shorter
ligands, i.e., for longer ligands, an increase of tendency to
coiling is observed.

We have also evaluated the mass dipoles and their length
and orientation with respect to the vector perpendicular to the
wall in functions of the core distance from the wall. These
characteristics provide information about nonuniformity of the
distribution of segments around core particles. In Fig. 5, we
show the normalized histograms P(Rm) of the lengths Rm of the
mass dipoles at two distances of core molecules from the wall.
Note that in all cases the length of mass dipoles is somewhat
lower if the core molecule is adjacent to the wall, compared
to the core molecule in the bulk part of the system. The plots
presented here are characteristic for other bulk densities.

An increase of the bulk density causes the shift of the
histograms towards lower values of Rm. This point illustrates

FIG. 4. The end-to-end distances normalized by the length of stretched
chains, DN = (N � 1)σ. Lines are for the systems from Fig. 1(a), while
lines decorated with symbols – for selected systems from Fig. 1(b). The inset
magnifies the results for the systems L6N6 at distances close to the wall.

FIG. 5. Normalized distributions of the lengths of the mass dipoles, P(Rm),
for selected systems. The bulk densities ρ∗0b are given in the figure. Dashed
red lines are for the core particles located at the wall, z = 2σ, while solid black
lines—at z = 10σ. The inset of (a) illustrates how the location of the maximum
of P(Rm) at z = 2σ changes with the bulk density ρ∗0b. These calculations are
for the system L3N12.

the inset of panel (a), where we show how the position of
the maximum of P(Rm) changes with the bulk density in the
system L3N12. This plot is a characteristic also for other
systems. As one can expect, the length of the mass dipoles
increases for increasing number of segments per ligand, N.
Also, the Gaussian-like histograms become broader for larger
N. Note that all plots in Fig. 5 have been drawn using the
same scale. The obtained results for the length of the mass
dipoles are not surprising: more significant nonuniformity in
the distribution of segments around cores occurs for longer
(and instantaneously fewer) ligands.

Normalized probability densities P(t), (t = cos θ), charac-
terizing orientation of the mass dipoles for selected systems
and at selected distances of the core particle from the wall,
are displayed in Figs. 6(a) and 6(b). Before interpreting those
curves we recall that for θ = 0 (t = 1) the majority of the seg-
ments is concentrated at the hemisphere of the core opposite to
the wall, for θ = π/2 (t = 0) the mass dipoles are parallel to the
wall, and for θ = π (t =�1) the mass dipole vector points toward
the wall. In general, for the cores from the layer adjacent to the
wall, the orientation effects are more pronounced for systems
with shorter ligands and weaker for longer ligands. However,
for longer ligands, the orientation effects extend over larger
distances from the wall.

Let us compare the distributions P(t) for two extreme
cases of L3N12 (upper left panel) and of L12N3 [lower right
panel of Fig. 6(a)]. In the first (L3N12) case, the dipoles for
the layer of cores adjacent to the wall (z = 2σ) predominantly
assume their orientation parallel to the wall, although many
of them posses orientation with 0 < θ < π/2. This predomi-
nant orientation (θ = 0) extends over several layers and even
at z = 10σ some marginal effects are seen. In the second case
(L12N3, lower right panel), the function P(t) of mass dipoles
for the cores adjacent to the wall exhibits a large maximum at
θ = 0, but orientation effects vanish quickly with z. More-
over, at moderate bulk fluid density the orientation effects
within the cores at the wall are more pronounced than at high
density [Fig. 6(b)], but they disappear quickly with z and at
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FIG. 6. Examples of the distribution functions P(t) illustrating the orientation of mass dipoles. Particular panels have been obtained for systems that differ by
the numbers of the ligands, L, and of the segments, N. Different curves, however, correspond to different locations of the core with respect to the wall, z. In (a),
these locations are just consecutive maxima and minima of the local densities ρ0(z), cf. Fig. 1. Part (a) is for high bulk densities, while part (b)—for moderate
bulk densities. Right panel of (b) illustrates schematically how the dominating orientation in consecutive layers changes with the length of ligands and bulk
density.

z = 4σ only marginal ordering with small maxima at θ = π/2 is
seen.

Right panel of Fig. 6(b) displays schematic predominant
ordering within consecutive maxima of the local density ρ0(z).
For long chains at high bulk density, the mass dipoles within
consecutive layers of cores are oriented parallel to the sur-
face. For long as well as short chains at lower bulk densities
and for short chains at high bulk densities, the dipoles for the
cores adjacent to the wall possess predominant orientation with
θ = 0 and θ = π/2 for the next layers. Physical interpretation
of the sources of the observed differences in the behavior of
different systems is difficult. Perhaps, more detailed answers
could be found by introducing some additional characteristics,
like the components of the “local” gyration tensor, dependent
on the distance of a particle from the wall. A fast decay of the
orientational effects is also connected with the assumed repul-
sive wall-core and wall-segment forces and purely repulsive
segment-segment interactions. For the systems with attrac-
tive wall-segment and segment-segment interactions, one can
expect a spontaneous reorganization (“patterning”) within seg-
ments around a single nanoparticle.19 The reorganization of
the segments would result in the changes of the mass dipole.
This effect could depend on the distance of the core from
the wall, due to a competition between wall-segment and
segment-segment interactions.

Figure 7 displays examples of the radial distribution func-
tion of the cores for two limiting with respect to the number
of ligands systems, namely, for L3N12 and for L12N3 at a
high and at a moderate bulk density. For each case, two radial
distribution functions have been evaluated for the layer of
1σ thick parallel to the wall and passing through the first
local density maximum (cf. Fig. 1) and for the layer of the
same thickness in the bulk part of the system. Of course,
in the bulk phase, the pair correlations are much less pro-
nounced, due to lower average density within that layer. Note
that the plots of pair correlation functions for remaining sys-
tem at similar bulk densities “lie between” the functions from
Fig. 7.

Similarly as in the case of core local densities, the oscil-
lations of radial distributions are more pronounced for the
systems with shorter ligands, i.e., on average, shorter ligands

are a bigger obstacle for proximity of cores to nearer dis-
tances. For longer ligands, the pair correlations are much less
pronounced and for the system L3N12 at high bulk density
only one peak for the first correlation shell is seen in Fig. 7.
Moreover, for the system L12N3, the distance between the
consecutive peaks of g(r) is larger than 5σ, i.e., it is signif-
icantly higher than the Lennard-Jones diameter of cores σ0.
Our general observation is that at constant N t the presence of
short ligands strengthens core-core and core-wall correlations,
while long ligands—weaken those correlations.

The results for the radial distribution function, together
with the results for the core local densities, suggest quite dif-
ferent influence of short and long ligands on the structure of the
fluid. In other words, the structural properties of the systems
strongly depend on architecture of particles. If we employ a
perturbation approach to the system excess (over an ideal sys-
tem) free-energy, then the only free-energy term that explicitly
depends on the number of core-segment and segment-segment
bonds is the term due the intramolecular connectivity and
this term has a dominant influence of the observed structural
differences.

FIG. 7. Examples of the pseudo-two-dimensional radial distribution func-
tions for the system L3N12 (upper panel) and L12N3 (lower panel). Lines
decorated with symbols denote the functions at the surface (within the first
local density maximum), while lines without symbols are the functions in
the bulk part of the systems. Solid lines correspond to high bulk density,
ρ∗0b = 0.468 and dashed lines—to moderate bulk densities, ρ∗0b = 0.211.
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We have also evaluated effective particle-particle inter-
actions between a pair of particles. In contrast to the previous
studies,30 in this study we have computed the “Boltzmann aver-
aged” potential (that, in fact, is identical with the pair potential
used in the Reference Average Mayer theory of molecular flu-
ids58,59). We calculated the bulk radial distribution functions
at two very low bulk densities and extrapolated them to zero
bulk density. Then, the effective potential was

Ueff (r) = −kT ln G2(r), (7)

where G2(r) = limρ0b→0 g(r).
The potential Ueff (r) for investigated systems is shown in

Fig. 8. Additionally, we have evaluated the effective Barker-
Henderson diameter,60 deff = Deff /σ,

Deff =

∫ R0

0
dr{1 − exp[−Ueff (r)/kT ]}, (8)

where R0 is the root of Ueff (R0) = 0. The dependence of deff

on the number of ligands is displayed in the inset of Fig. 8.
Except for the system L12N3 (and, to a small extent, for

the system L9N4), where at some core-core separations a very
weak attractive well appears, the effective potentials are repul-
sive. Of course, this attractive well is due to direct core-core
interactions. Instantaneously, the repulsive branch of the effec-
tive potential for the systems L12N3 and L9N4 is “harder” than
for all remaining systems. With a decrease of L (i.e., with an
increase of N), the repulsive branches become “softer,” but the
range of the repulsion increases. The effective potential decays
to zero at the distance r = 2d + 2(N � 1)σ.

Although differences between the effective potential for
particular systems are significant, the differences between val-
ues of deff are not so big. The effective Barker-Henderson
diameter ranges from approximately 5.95σ to 6.2σ and the
largest value of deff is observed, surprisingly, for longest,
N = 12, ligands.

In perturbation theories of simple fluids, the effective
Barker-Henderson diameter is usually treated as the diameter
of the reference, hard-sphere system. The effective reduced
density of such reference system would be thus larger for
higher values of deff , thus oscillations of the relevant pair dis-
tribution function would be expected to be larger, contrary to

FIG. 8. The effective pair potential Ueff (r) for the systems described in the
figure. The inset illustrates how the Barker-Henderson diameter, deff , changes
with the number of ligands, L, at L × N = 36.

the simulation results. The mobility of ligands depends on the
system density. This means that the effective potential obtained
in zero-density limit cannot be used to approximate core-core
interactions in more dense systems. Thus, “effective diameter”
in a hypothetical perturbation theory for considered systems
should be also strongly density dependent.

IV. DENSITY FUNCTIONAL THEORY
A. The theory

We have undertaken efforts to describe local densities
by means of a version44,49 of density functional theory. This
approach is a quite standard now, and we outline its basic points
only. First, we concentrate on the principal model difference
between the theory and simulations. In contrast to simulations,
the length of the bonds in the theory is assumed to be constant,
while in simulations the bond length can fluctuate and the range
of these fluctuations depends on the force constants in Eqs. (1)
and (2). In theory, the intramolecular bonding potential, Vb(R),
has the form44,49

exp[−Vb(R)/kT ] =
L∏

i=1

δ(|r0 − r(i)
1 | − d)

4πd2

×

N−1∏
j=1

δ(|r(i)
j − r(i)

j+1 | − σ)

4πσ2
. (9)

In the above, R = (r0, {r(i)
j }), the superscript refers to the ligand

i = 1, 2, . . ., L, and the subscript—to the segment number
j = 1, 2, . . ., N.

The grand potential of the system, Ω, is a functional of
the local density of particles, ρ(R),

Ω[ρ(R)] = Fid[ρ(R)] + Fex[ρ(R)] +
∫

dR[Vext(R) − µ]ρ(R).

(10)

In the above, µ is the configurational chemical potential,
V ext(R) is the external potential field, being the sum of the
external potential energies acting on the core and all the
segments,

Vext(R) = v0(r0) +
L∑

i=1

N∑
j=1

vs(r
(i)
j ), (11)

F id[ρ(R)] is the ideal free-energy, F id[ρ(R)]/kT = ∫ dRρ(R)
[Vb(R) + ln(ρ(R)) � 1], and Fex[R] is the excess free-energy.

The excess free-energy of the system is decomposed into
the following parts: hard-sphere, Fhs, attractive force, Fatt ,
and the contribution due to intramolecular connectivity, Fb,
F = Fhs + Fatt + Fb. In order to write down these functionals,
we introduce the site densities for all the sites of the particle.
The symbol ρ0(z) abbreviates the core local density and ρ(i)

j (z),
the density of jth segment within the ith ligand. For the model
in question, the functions ρ(i)

j (z) are independent of the ligand’s
number. We also introduce the total densities: the total segment
density, ρs(z), ρs(z) =

∑N
j=1 ρj(z), ρj(z) = Lρ(i)

j (z), and the
total density of all sites ρt(z) = ρ0(z) + ρs(z).

The excess free-energies Fhs and Fb are evaluated44,49 by
using an approach that requires the introduction of four scalar
and two vector weighted densities and the White-Bear theory
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for the free energy of hard spheres.50,51 The definitions of the
scalar weighted densities, nα(r), α = 0, 1, 2, 3, as well as
the two vector densities, nVγ ,m(r), γ = 1, 2, together with the
definition of Fhs can be found in several studies44,49–51 and for
this reason we have decided to omit is here. We only mention
that in our treatment the diameters of hard spheres of cores
and of segments have been set to the Lennard-Jones diameters
σ0 and σ, respectively.

The attractive van der Waals interactions appear only
between the cores. Assuming mean-field approximation, the
free energy resulting from attractive intermolecular forces is

Fatt[ρ(R)] =
1
2

{∫
dr0ρ0(r0)

∫
dr′0ρ0(r′0)u(att)

00 (|r0 − r′0 |)
}

,

(12)

where the attractive part, u(att)
00 , of the potential (3) is defined

according to the Barker-Henderson approach,

u(att)
kl (r) =

{
0, r < σkl,
ukl(r), otherwise.

(13)

We are aware that more sophisticated treatments exist, but
since we employ the theory to the systems at temperature much
higher than the bulk critical temperature, we have decided to
employ this simplest division.

The free-energy contribution due to the intramolecu-
lar connectivity is approximated by the expression resulting
from Wertheim’s theory of association, generalized44,49,52 to
nonuniform fluids

Fb/kT =
∫

dr
[

L − LN
LN + 1

n0(r)ξ(r) ln yhs(σ,σ, {nα})

−
L

LN + 1
n0(r)ξ(r) ln yhs(σ,σ0, {nα})

]
, (14)

where ξ(r) = 1− nV2(r) · nV2(r)/n2
2(r) and ln yhs(σ, σ, {nα})

and ln yhs(σ, σ0, {nα}) are the contact values of the hard-
sphere cavity functions, i.e., the values of y(s, s1, {nα}) at the
distance (s + s1)/2 and they are given by Eq. (11) of Ref. 49.

The density profile equations are obtained minimizing the
grand canonical potential, δΩ/ρ(R) = 0. For the system with
local densities varying in one dimension, z, we obtain

ρ0(z) = exp(µ/kT )h0(z)[G(N+1)(z)]L (15)

and

ρ(i)
j (z) = exp(µ/kT )h(i)

j (z)G(N+1−j)(z)G̃(j+1)(z), (16)

where h(i)
j (z) = exp

{
−[δFex/δρ

(i)
j (z) + vs(z)]/kT

}
, h0

= exp {−[δFex/δρ0(z) + v0(z)]/kT }. We recall that according
to our model the functions h(i)

j are independent of the ligand
index i; thus we can drop the superscript (i) in the symbols of
these functions, hj ≡ h(i)

j . The functions G(j) and G̃(j) are given
by the following recurrence relations:

G(j)(z) =
∫

dz′hN−j+2(z′)
H(dN−j − |z − z′ |)

2dN−j
G(j−1)(z′), (17)

for j = 2, 3, . . ., N and G(1)(z) ≡ 1,

G̃(2)(z) =
∫

dzh0(z′)
H(d0 − |z − z′ |)

2d0
[G(N+1)(z′)]L−1, (18)

and, for j > 2,

G̃(j)(z) =
∫

dzhj(z
′)

H(dj − |z − z′ |)

2dj
G̃(j−1)(z′). (19)

In the above, H(d � z) is the step-function and d0 = d and
dj = σ for j = 2, 3, . . ., N. Details on the numerical methods
are given in Refs. 44 and 49.

The above equations are analogous to those developed
for star polymers.44,49 However, in the case of star polymers,
the geometry of “tethering points” is usually fixed. The fixed
molecular geometry can be taken into account employing the
second-order Wertheim theory for the free-energy contribution
due to intramolecular bonding44 or alternatively by imposing
angular bonds and angular-dependent bonding potential, cf.
Eq. (7) of Ref. 49. The model considered here assumes that
the ligands can “slide” over the core surface, consequently the
geometry of particles changes. This justifies the application of
the first-order Wertheim theory.

The architecture of particles enters explicitly the density
profile equations at two places. First, the expression for Fb

[Eq. (14)] and thus the functions h0(z) and hj(z) depend on N
and L and on y(s, s1, {nα}). Second, structure of the recurrence
relations (17)–(19) results from the form of the binding poten-
tial (9), i.e., from the number of ligands L and the number of
segments per ligand, N.

B. Comparisons with simulation data

In numerical calculations we have used the fast Fourier
transform method to calculate the convolution integrals and
the grid size equal to 0.02σ. In principle, the method of numer-
ical calculations was quite similar to the methods employed in
Refs. 44 and 49.

The principal aim of our calculations is to check the qual-
ity of the predictions of the theory for different systems under
study. The self-consistency and accuracy of calculations was
checked through the pressure sum rule, which states that the
system pressure is equal to the sum of the local densities
of cores and segments in contact with the wall, p/kT = ρ0

(z = σ0/2) + ρs(z = σs/2). Comparing this value to the bulk
pressure computed from the grand potential for bulk system
yields a measure of self-consistency. The agreement was quite
good and is of the order of 0.5%, in general. It is not sur-
prising, since DFT is constructed so that this sum rule is
satisfied.44

In Fig. 9, we compare the density profiles for the sys-
tem L6N6 obtained from simulations (symbols) and from
theory.

In the case of the system with small number of long
ligands, the agreement of theory with simulations is quite sat-
isfactory. Similarly as in the case of polymeric systems (cf.
Ref. 38 and the references quoted therein), it is somewhat bet-
ter at higher bulk densities, and better for core (larger) than for
segment (smaller) densities.

In the case of the profiles of segments [(b) and (d)],
the cusps appear z/σ = 1.5. The origin of the cusps is the
same as the origin of the cusps in the profiles of the teth-
ered layer at a wall:61 the existence of bonds. In particular,
the cusp at z/σ = 1.5 results from configurations where one
segment is at the distance of the closest approach from the
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FIG. 9. Comparisons of the local densities of cores [(a)
and (c)] and segments [(b) and (d)] for the systems L3N12
[(a) and (b)] and L6N6 [(c) and (d)] at bulk core densities
given in (a) and (c) [the bulk core densities in (b) are the
same as in (a), and in (d)—the same as in (c)]. Symbols are
simulation results and lines are theoretical predictions.
For clarity, in the case of simulation data only every four
have been plotted.

wall while its neighboring segment is located perpendicularly
to the wall at the bonding distance from the first one. For the
profiles evaluated from the theory, these cusps are well-seen,
and in the case of simulated data, they are slightly rounded
off, due to small fluctuations of the lengths of bonds between
segments.

If the number of ligands increases, the agreement of the-
oretical predictions becomes worse. We have concentrated on
the profiles of the cores and Fig. 10 compares the results
obtained for the systems L9N4 and L3N12 at rather high
bulk density, ρ∗0 = 0.466. The theory predicts the simula-
tion data at a quantitative level. In particular, for the system
L9N4, the course of ρ0(z) at the wall as predicted by the

FIG. 10. Comparisons of the local densities of cores for the systems L9N4
(black solid line and circles) and L12N3 (red dashed line and square). Symbols
are simulation results and lines are theoretical predictions. For clarity, in the
case of simulation data only every four have been plotted. For both systems,
the bulk core density is 0.466.

theory significantly deviates from the simulation result. Sim-
ilar observation concerns the system L3N12, but not also
the simulated and theoretical density are slightly shifted in
phases.

Assessing significance of the above results, one should
recall differences between models used in theory and simula-
tions. Whereas theory assumes constant lengths of all bonds
and hard-core segments in simulations, the lengths of bonds
fluctuate and the segments are “soft,” as their mutual interac-
tions are described by the repulsive branch of the Lennard-
Jones (12,6) potential. It is not clear if those differences in the
calculation procedure lead to reduction or enlargement of the
errors of theoretical procedure.

Our conclusions arising from the latter calculations are
that the DFT seems to provide reasonable results if the num-
ber of attached ligands is not very high. For a big number of
ligands, the system resembles the so-called Gaussian-hard core
model that was used to describe star polymers by means of a
density functional approach.62,63 This type of model is based
on the development of an effective particle-particle potential
Ueff (r).

V. SUMMARY

In this work, we have carried out large scale molecu-
lar dynamics simulations of systems involving particles with
a number of mobile ligands attached to the cores in con-
tact with a hard wall. Our calculations have been performed
assuming that the total number of segments is constant. More-
over, our calculations are based on an implicit solvent model,
that is, no solvent molecules are present in the system, but
the interactions should be treated as effective, solvent medi-
ated ones. Despite the above simplification, the simulated
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systems comprised hundreds of thousands of “atomic units”
(i.e., segments and cores). Segment-segment and segment-
core interactions were purely repulsive, while the core-core
interactions were described by Lennard-Jones (12,6) poten-
tial. Therefore, the interactions between segments effectively
screen direct core-core attractions.

For all systems, we evaluated local densities of cores
and of segments. The shape of the density profiles crucially
depends on the number of ligands. If the number of lig-
ands increases (i.e., if the number of segments per ligand
decreases), the structure of the fluid at the wall becomes more
pronounced and for the shortest ligands (the system L12N3)
the density profile exhibits the existence of a well-developed
layered structure that extends over 5-6 layers from the wall.
By contrast, in the systems with long ligands, the density pro-
files exhibit only one pronounced peak at the wall and the
layered structure decays quickly with the distance from the
surface. We have also evaluated the Boltzmann averaged effec-
tive particle-wall potentials. Of course, these potentials are soft
repulsive and their range depends on the number of ligands per
segment.

The structure of the fluid within slabs parallel to the
wall was characterized by the pseudo-two-dimensional core-
core radial distribution functions. The change of the shape
of these functions with the number of ligands L is similar
as the change of the density profiles. Larger number of short
ligands results in a significant increase of the pair correla-
tions. Except for the systems L12N3, the effective, Boltz-
mann averaged pair potentials are repulsive, i.e., the screening
of direct, attractive core-core interactions by the repulsive
segment-segment and segment-core ones is effective for the
majority of the investigated systems. Even for the system
L12N3, the attractive well of the effective pair potential is very
shallow.

The distribution of segments around cores was charac-
terized by end-to-end distances and by the lengths and ori-
entations of the mass dipoles. We investigated how these
characteristics vary with the distance of cores from the wall.
Surprisingly, the end-to-end distances of ligands are almost
insensitive to the position of cores with respect to the wall.
Similarly, the dependence of the lengths of the mass dipoles
on the location of the core molecules is weak. The mass dipoles
are slightly longer for the molecules located in the bulk part
of the systems. The orientation of the mass dipoles depends
on the number (length) of the ligands and on the bulk density.
For low bulk densities and for longer ligands, the orientation
of the mass dipoles for cores adjacent to the wall is perpen-
dicular to the wall with ligands grouped at the hemisphere
of the core directed toward the system interior. Under a sim-
ilar bulk density the mass dipoles of the cores at the wall
for short ligands are oriented parallel to the wall. For high
densities, the cores adjacent to the wall with short, as well
as with long ligands the mass dipoles assume orientations
parallel to the wall. Except for high bulk densities, the orienta-
tion effects decay quickly with the distance of cores from the
wall.

In order to describe the density profiles have also used
a version of the density functional approach. The theory
employed by us was previously used for the description of

star polymers. For the systems composed of particles with
3 ≤ L ≤ 6 ligands this theory for the profiles of cores works
reasonable well at higher densities and larger deviations are
observed only low values of ρ0b. However, for the systems
with L = 9 and L = 12, the discrepancies between the-
ory and simulations are more significant. The systems with
high number of ligands resemble the systems involving hard-
core Gaussian overlap molecules. The latter systems have
been previously described using appropriate effective pair
potentials.

In our opinion, it would be of interest to extend the
present study to the case of hairy molecules confined between
two hard walls (in slit-like pores). The presence of two
walls located nearby should lead to more pronounced differ-
ences between investigated models due to additional strong
geometrical constrains. The investigation of the behavior of
nanoparticles in pores would be useful to explain some phe-
nomena that occur during flow of mixtures of fluids and
nanoparticles.64,65 Moreover, adsorption of nanoparticles on
surfaces can change their wettability66,67 and density func-
tional approach is well suited to study surface phase transitions.
Some of those problems are currently under study in our
laboratory.
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44A. Malijevský, P. Bryk, and S. Sokołowski, “Density functional approach
for inhomogeneous star polymer fluids,” Phys. Rev. E 72, 032801
(2005).

45D. Cao, T. Jiang, and J. Wu, “A hybrid method for predicting the microstruc-
ture of polymers with complex architecture: Combination of single-chain
simulation with density functional theory,” J. Chem. Phys. 124, 164904
(2006).

46E. S. McGarrity, J. M. Thijssen, and N. A. M. Besseling, “Fluids density
functional theory studies of supramolecular polymers at a hard surface,”
J. Chem. Phys. 133, 084902 (2010).

47B. D. Marshall and W. G. Chapman, “Higher order classical density func-
tional theory for branched chains and rings,” J. Phys. Chem. B 115, 15036
(2011).

48J. Jiang, X. Xu, and D. Cao, “Density functional theory for inhomogeneous
ring polymeric fluids,” Phys. Rev. E 86, 041805 (2012).

49J. Jiang, X. Xu, J. Huang, and D. Cao, “Density functional theory for rod-
coil polymers with different size segments,” J. Chem. Phys. 135, 054903
(2011).

50R. Roth, R. Evans, A. Lang, and G. Kahl, “Fundamental measure theory for
hard-sphere mixtures revisited: The white bear version,” J. Phys.: Condens.
Matter 14, 12063 (2002).

51D. P. Cao and J. Z. Wu, “Density functional theory for semiflexible and
cyclic polyatomic fluids,” J. Chem. Phys. 121, 4210 (2004).

52M. S. Wertheim, “Thermodynamic perturbation theory of polymerization,”
J. Chem. Phys. 87, 7323 (1987).

53H. Chen and E. Ruckenstein, “Micellar structures in nanoparticle- multi-
block copolymer complexes,” Langmuir 30, 3723 (2014).

54S. B. Jabes, H. O. S. Yadav, S. K. Kumar, and C. Chakravarty, “Fluctuation-
driven anisotropy in effective pair interactions between nanoparticles:
Thiolated gold nanoparticles in ethane,” J. Chem. Phys. 141, 154904
(2014).

55Ł. Baran and S. Sokołowski, “A comparison of molecular dynamics
results for two models of nanoparticles with fixed and mobile ligands in
two-dimensions,” Appl. Surf. Sci. 396, 1343 (2017).

56S. Plimpton, “Fast parallel algorithms for short-range molecular-dynamics,”
J. Comput. Phys. 117, 1 (1995).

57For the description of the package see http://lammps.sandia.gov.
58W. R. Smith and I. Nezbeda, “The reference average Mayer-function (RAM)

perturbation theory for molecular fluids,” Adv. Chem. 204, 235 (1983).
59A. A. Louis, “Effective potentials for polymers and colloids: Beyond the

van der Waals picture of fluids?,” Philos. Trans. R. Soc., A 359, 939
(2001).

60J. A. Barker and D. Henderson, “What is ‘liquid’? Understanding the states
of matter,” Rev. Mod. Phys. 48, 587 (1976).
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